270 resultados para Traffic Record Analysts.
Resumo:
Adolescent injury remains a significant public health concern and is often the result of at-risk transport related behaviours. When a person is injured actions taken by bystanders are of crucial importance and timely first aid appears to reduce the severity of some injuries (Hussain & Redmond, 1994). Accordingly, researchers have suggested that first aid training should be more widely available as a potential strategy to reduce injury (Lynch et al., 2006). Further research has identified schools as an ideal setting for learning first aid skills as a means of injury prevention (Maitra, 1997). The current research examines the implications of school based first aid training for young adolescents on injury prevention, particularly relating to transport injuries. First aid training was integrated with peer protection and school connectedness within the Skills for Preventing Injury in Youth (SPIY) program (Buckley & Sheehan, 2009) and evaluated to determine if there was a reduction in the likelihood of transport related injuries at six months post-intervention. In Queensland, Australia, 35 high schools were recruited and randomly assigned to intervention and control conditions in early April 2012. A total of 2,000 Year nine students (mean age 13.5 years, 39% male) completed surveys six months post-intervention in November 2012. Analyses will compare the intervention students with control group students who self-reported i) first aid training with a teacher, professional or other adult and ii) no first aid in the preceding six months. Using the Extended Adolescent Injury Checklist (E-AIC) (Chapman, Buckley & Sheehan, 2011) the transport related injury experiences included being injured while “riding as a passenger in a car”, “driving a car off road” and “riding a bicycle”. It is expected that students taught first aid within SPIY will report significantly fewer transport related injuries in the previous three months, compared to the control groups described above. Analyses will be conducted separately for sex and socio-economic class of schools. Findings from this study will provide insight into the value of first aid in adolescent injury prevention and provide evidence as to whether teaching first aid skills within a school based health education curriculum has traffic safety implications.
Resumo:
Understanding network traffic behaviour is crucial for managing and securing computer networks. One important technique is to mine frequent patterns or association rules from analysed traffic data. On the one hand, association rule mining usually generates a huge number of patterns and rules, many of them meaningless or user-unwanted; on the other hand, association rule mining can miss some necessary knowledge if it does not consider the hierarchy relationships in the network traffic data. Aiming to address such issues, this paper proposes a hybrid association rule mining method for characterizing network traffic behaviour. Rather than frequent patterns, the proposed method generates non-similar closed frequent patterns from network traffic data, which can significantly reduce the number of patterns. This method also proposes to derive new attributes from the original data to discover novel knowledge according to hierarchy relationships in network traffic data and user interests. Experiments performed on real network traffic data show that the proposed method is promising and can be used in real applications. Copyright2013 John Wiley & Sons, Ltd.
Resumo:
This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
Information and communications technologies are a significant component of the healthcare domain and electronic health records play a major role within it. As a result, it is important that they are accepted en masse by healthcare professionals. How healthcare professionals perceive the usefulness of electronic health records and their attitudes towards them have been shown to have significant effects on their overall acceptance. This paper investigates the role of perceived usefulness and attitude on the intention to use electronic health records by future healthcare professionals using polynomial regression with response surface analysis. Results show that the relationship is more complex than predicted in prior research. The paper concludes that the predicting properties of the above determinants must be further investigated to clearly understand their role in predicting the intention to use electronic health records and in designing systems that are better adopted by healthcare professionals of the future.
Resumo:
In this paper we analyse the effects of highway traffic flow parameters like vehicle arrival rate and density on the performance of Amplify and Forward (AF) cooperative vehicular networks along a multi-lane highway under free flow state. We derive analytical expressions for connectivity performance and verify them with Monte-Carlo simulations. When AF cooperative relaying is employed together with Maximum Ratio Combining (MRC) at the receivers the average route error rate shows 10-20 fold improvement compared to direct communication. A 4-8 fold increase in maximum number of traversable hops can also be observed at different vehicle densities when AF cooperative communication is used to strengthen communication routes. However the theorical upper bound of maximum number of hops promises higher performance gains.
Resumo:
Nha Trang Bay (NTB) is located on the Central Vietnam coast, western South China Sea. Recent coastal development of Nha Trang City has raised public concern over an increasing level of pollution within the bay and degradation of nearby coral reefs. In this study, multiple proxies (e.g., trace metals, rare earth elements (REEs), and Y/Ho) recorded in a massive Porites lutea coral colony were used to reconstruct changes in seawater conditions in the NTB from 1995 to 2009. A 14-year record of REEs and other trace metals revealed that the concentrations of terrestrial trace metals have increased dramatically in response to an increase in coastal development projects such as road, port, and resort constructions, port and river dredging, and dumping activities since 2000. The effects of such developmental processes are also evident in changes in REE patterns and Y/Ho ratios through time, suggesting that both parameters are critical proxies for marine pollution.
Resumo:
Aim The objective is to establish determinants of drink-driving and its association with traffic crashes in Ghana. Methods A multivariable logistic regression was used to establish significant determinants of drink-driving and a bivariate logistic regression to establish the association between drink–driving and road traffic crashes in Ghana. Results In total, 2,736 motorists were randomly stopped for breath testing of whom 8.7% tested positive for alcohol. Among the total participants, 5.5% exceeded the legal BAC limit of 0.08%. Formal education is associated with a reduced likelihood of drink-driving compared with drivers without formal education. The propensity to drink-drive is 1.8 times higher among illiterate drivers compared with drivers with basic education. Young adult drivers also recorded elevated likelihoods for driving under alcohol impairment compared with adult drivers. The odds of drink-driving among truck drivers is OR=1.81, (95% CI=1.16 to 2.82) and two wheeler riders is OR=1.41, (95% CI=0.47 to 4.28) compared with car drivers. Contrary to general perception, commercial car drivers have a significant reduced likelihood of 41%, OR=0.59, (95% CI=0.38 to 0.92) compared with the private car driver. Bivariate analysis conducted showed a significant association between the proportion of drivers exceeding the legal BAC limit and road traffic fatalities, p<0.001. The model predicts a 1% increase in the proportion of drivers exceeding the legal BAC to be associated with a 4% increase in road traffic fatalities, 95% CI= 3% to 5% and vice versa. Conclusion A positive and significant association between roadside alcohol prevalence and road traffic fatality has been established. Scaling up roadside breath test, determining standard drink and disseminating to the populace and formulating policies targeting the youth such as increasing minimum legal drinking age and reduced legal BAC limit for the youth and novice drivers might improve drink-driving related crashes in Ghana.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
-- The role of traffic safety culture in Australia -- A comparison of drink driving (a success story) and speeding (a work in progress) ―Countermeasure approaches ―Community attitudes, perceptions and behaviors -- Lessons from Australia for the further development of the traffic safety culture concept
Resumo:
Crashes on motorway contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence reduce crashes will help address congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a Short time window around the time of crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques, that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists, and that this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with traffic flow data of one hour prior to the crash using an incident detection algorithm. Traffic flow trends (traffic speed/occupancy time series) revealed that crashes could be clustered with regards of the dominant traffic flow pattern prior to the crash. Using the k-means clustering method allowed the crashes to be clustered based on their flow trends rather than their distance. Four major trends have been found in the clustering results. Based on these findings, crash likelihood estimation algorithms can be fine-tuned based on the monitored traffic flow conditions with a sliding window of 60 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
Crashes that occur on motorways contribute to a significant proportion (40-50%) of non-recurrent motorway congestions. Hence, reducing the frequency of crashes assists in addressing congestion issues (Meyer, 2008). Crash likelihood estimation studies commonly focus on traffic conditions in a short time window around the time of a crash while longer-term pre-crash traffic flow trends are neglected. In this paper we will show, through data mining techniques that a relationship between pre-crash traffic flow patterns and crash occurrence on motorways exists. We will compare them with normal traffic trends and show this knowledge has the potential to improve the accuracy of existing models and opens the path for new development approaches. The data for the analysis was extracted from records collected between 2007 and 2009 on the Shibuya and Shinjuku lines of the Tokyo Metropolitan Expressway in Japan. The dataset includes a total of 824 rear-end and sideswipe crashes that have been matched with crashes corresponding to traffic flow data using an incident detection algorithm. Traffic trends (traffic speed time series) revealed that crashes can be clustered with regards to the dominant traffic patterns prior to the crash. Using the K-Means clustering method with Euclidean distance function allowed the crashes to be clustered. Then, normal situation data was extracted based on the time distribution of crashes and were clustered to compare with the “high risk” clusters. Five major trends have been found in the clustering results for both high risk and normal conditions. The study discovered traffic regimes had differences in the speed trends. Based on these findings, crash likelihood estimation models can be fine-tuned based on the monitored traffic conditions with a sliding window of 30 minutes to increase accuracy of the results and minimize false alarms.
Resumo:
Residential balcony design influences speech interference levels caused by road traffic noise and a simplified design methodology is needed for optimising balcony acoustic treatments. This research comprehensively assesses speech interference levels and benefits of nine different balcony designs situated in urban street canyons through the use of a combined direct, specular reflection and diffuse reflection path theoretical model. This thesis outlines the theory, analysis and results that lead up to the presentation of a practical design guide which can be used to predict the acoustic effects of balcony geometry and acoustic treatments in streets with variable geometry and acoustic characteristics.
Resumo:
Ethiopia has one of Africa’s fastest growing non-oil producing economies and an increasing level of motorisation (AfDB, OECD, UNDP, & UNECA, 2012). This rapidly increasing mobility has created some unique road safety concerns; however there is scant published information and related commentary (United Nations Economic Commission for Africa, 2009). The objective of this paper is to quantify police-reported traffic crashes in Ethiopia and characterise the existing state of road safety. Six years (July 2005 - June 2011) of police-reported crash data were analysed, consisting of 12,140 fatal and 29,454 injury crashes on the country’s road network. The 12,140 fatal crashes involved 1,070 drivers, 5,702 passengers, and 7,770 pedestrians, totalling 14,542 fatalities, an average of 1.2 road user fatalities per crash. An important and glaring trend that emerges is that more than half of the fatalities in Ethiopia involve pedestrians. The majority of the crashes occur during daytime hours, involve males, and involve persons in the 18-50 age group—Ethiopia’s active workforce. Crashes frequently occur in mid blocks or roadways. The predominant collision between motor vehicles and pedestrians was a rollover on a road tangent section. Failing to observe the priority of pedestrians and speeding were the major causes of crashes attributed by police. Trucks and minibus taxis were involved in the majority of crashes, while automobiles (small vehicles) were less involved in crashes relative to other vehicle types, partially because small vehicles tend to be driven fewer kilometres per annum. These data illustrate and justify a high priority to identify and implement effective programs, policies, and countermeasures focused on reducing pedestrian crashes.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.