186 resultados para Threshing machines.
Resumo:
This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
The commercialization of aerial image processing is highly dependent on the platforms such as UAVs (Unmanned Aerial Vehicles). However, the lack of an automated UAV forced landing site detection system has been identified as one of the main impediments to allow UAV flight over populated areas in civilian airspace. This article proposes a UAV forced landing site detection system that is based on machine learning approaches including the Gaussian Mixture Model and the Support Vector Machine. A range of learning parameters are analysed including the number of Guassian mixtures, support vector kernels including linear, radial basis function Kernel (RBF) and polynormial kernel (poly), and the order of RBF kernel and polynormial kernel. Moreover, a modified footprint operator is employed during feature extraction to better describe the geometric characteristics of the local area surrounding a pixel. The performance of the presented system is compared to a baseline UAV forced landing site detection system which uses edge features and an Artificial Neural Network (ANN) region type classifier. Experiments conducted on aerial image datasets captured over typical urban environments reveal improved landing site detection can be achieved with an SVM classifier with an RBF kernel using a combination of colour and texture features. Compared to the baseline system, the proposed system provides significant improvement in term of the chance to detect a safe landing area, and the performance is more stable than the baseline in the presence of changes to the UAV altitude.
Resumo:
We review a programme of research on the attribution of humanness to people, and the ways in which lesser humanness is attributed to some compared to others. We first present evidence that humanness has two distinct senses, one representing properties that are unique to our species, and the other—human nature—those properties that are essential or fundamental to the human category. An integrative model of dehumanisation is then laid out, in which distinct forms of dehumanisation correspond to the denial of the two senses of humanness, and the likening of people to particular kinds of nonhuman entities (animals and machines). Studies demonstrating that human nature attributes are ascribed more to the self than to others are reviewed, along with evidence of the phenomenon’s cognitive and motivational basis. Research also indicates that both kinds of humanness are commonly denied to social groups, both explicitly and implicitly, and that they may cast a new light on the study of stereotype content. Our approach to the study of dehumanisation complements the tradition of research on infrahumanisation, and indicates new directions for exploring the importance of humanness as a dimension of social perception.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
Electric walking draglines are physically large and powerful machines used in the mining industry. However with the addition of suitable sensors and a controller a dragline can be considered as a numerically controlled machine or robot which can then perform parts of the operating cycle automatically. This paper presents an analysis of the electromechanical system necessary precursor to automatic control
Resumo:
Draglines are very large machines that are used to remove overburden in open-cut coal mines. This paper outlines the design of a computer control system to implement an automated swing cycle on a production dragline. Subsystems and sensors have been developed to satisfy the constraints imposed by the task, the harsh operating environment and the mine's production requirements.
Resumo:
Dragline Swing to Dump Automation By Peter Corke, CSIRO Manufacturing Technology/CRC for Mining Technology and Equipment (CMTE) Peter Corke presented a case study of a project to automate the dragline swing to dump operation. The project is funded by ACARP, BHP Coal, Pacific Coal and the CMTE and is being carried out on a dragline at Pacific Coal's Meandu mine near Brisbane. Corke began by highlighting that the minerals industry makes extensive use of large, mechanised machines. However, unlike other industries, mining has not adopted automation and most machines are controlled by human operators on board the machine itself. Choosing an automation target The dragline automation was chosen because: ò draglines are one of the biggest capital assets in a mine; ò performance between operators vary significantly, so improved capital utilisation is possible; ò the dragline is often the bottleneck in production; ò a large part of the operation cycle is spent swinging from dig to dump; and ò it is technically feasible. There has been a history of drag line automation projects, none with great success.
Resumo:
An effective prognostics program will provide ample lead time for maintenance engineers to schedule a repair and to acquire replacement components before catastrophic failures occur. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique. For comparative study of the proposed model with the proportional hazard model (PHM), experimental bearing failure data from an accelerated bearing test rig were used. The result shows that the proposed prognostic model based on health state probability estimation can provide a more accurate prediction capability than the commonly used PHM in bearing failure case study.
Resumo:
Suppose a homeowner habitually enjoys sunbathing in his or her backyard, protected by a high fence from prying eyes, including those of an adolescent neighbour. In times past such homeowners could be assured that they might go about their activities without a threat to their privacy. However, recent years have seen technological advances in the development of unmanned aerial vehicles (‘UAVs’), also known colloquially as drones, that have allowed them to become more reduced in size, complexity and price. UAVs today include models retailing to the public for less than $350 and with an ease of operation that enables them to serve as mobile platforms for miniature cameras. These machines now mean that for individuals like the posited homeowner’s adolescent neighbour, barriers such as high fences no longer constitute insuperable obstacles to their voyeuristic endeavours. Moreover, ease of access to the internet and video sharing websites provides a ready means of sharing any recordings made with such cameras with a wide audience. Persons in the homeowner’s position might understandably seek some form of redress for such egregious invasions of their privacy. Other than some kind of self-help, what alternative measures may be available?
Resumo:
The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.
Resumo:
"We live in times in which unlearning has become as important as learning. Dan Pink has called these times the Conceptual Age,i to distinguish them from the Knowledge/Information Age in which many of us were born and educated. Before the current Conceptual Age, the core business of learning was the routine accessing of information to solve routine problems, so there was real value in retaining and reusing the templates taught to us at schools and universities. What is different about the Conceptual Age is that it is characterised by new cultural forms and modes of consumption that require us to unlearn our Knowledge/Information Age habits to live well in our less predictable social world. The ‘correct’ way to write, for example, is no longer ‘correct’ if communicating by hypertext rather than by essay or letter. And who would bother with an essay or a letter or indeed a pen these days? Whether or not we agree that the Conceptual Age, amounts to the first real generation gap since rock and roll, as Ken Robinson claims,ii it certainly makes unique demands of educators, just as it makes unique demands of the systems, strategies and sustainability of organisations. Foremost among these demands, according to innovation analyst Charlie Leadbeater,iii is to unlearn the idea that we are becoming a more knowledgeable society with each new generation. If knowing means being intimately familiar with the knowledge embedded in the technologies we use in our daily lives, then, Leadbeater says, we have never been more ignorant.iv He reminds us that our great grandparents had an intimate knowledge of the technologies around them, and had no problem with getting the butter churn to work or preventing the lamp from smoking. Few of us would know what to do if our mobile phones stopped functioning, just as few of us know what is ‘underneath’ or ‘behind’ the keys of our laptops. Nor, indeed, do many of us want to know. But this means that we are all very quickly reduced to the quill and the lamp if we lose our power sources or if our machines cease to function. This makes us much more vulnerable – as well as much more ignorant in relative terms – than our predecessors."
Resumo:
In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
Resumo:
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.