179 resultados para Terrain vague
Resumo:
The Independent Music Project is centred around the development and creation of new music, and includes research into copyright, business models of the future, new technologies, and new audiences. The music industry is undergoing the most radical changes it has faced in almost a century. New digital technologies have made the production, distribution, and promotion of recorded music accessible to anyone with a personal computer. People can now make high-quality digital copies of music and distribute them globally within minutes. Even bastions of the established industries, such as EMI and Columbia, are struggling to make sense of the new industry terrain. The whole employment picture has changed just as radically for people who wish to make a living from music. In Australia, many of the avenues that provided employment for musicians have either disappeared or dramatically shrunk. The advertising industry no longer provides the level of employment it used to prior to the Federal deregulation of the industry in 1992. In many places, new legislative pressures on inner-city and suburban venues have diminished the number of performance spaces that musicians can work in. Just as quickly, new sectors have opened to professional musicians: computer games, ringtones, sound-enabled toys and web advertising all present new opportunities to the enterprising musician. The opportunity to distribute music internationally without being signed to a major label is very attractive to many aspiring and established professionals. No doubt the music industry will face many more challenges as technologies continue to change, as global communication gets easier and faster, and as the challenges to copyright proliferate and change. These challenges cannot be successfully met on a single front. They require research and expertise from all sectors being affected, and this is why the independent music project (IMP) exists.
Resumo:
This presentation explores a model for building and sustaining secondary – tertiary partnerships in Arts education. It traces the evolution of partner relationships in a challenging educational landscape, assesses the value of dialogue between educators, design professionals and community stakeholders, and tells the story of a particular secondary – tertiary partnership exploring new pedagogy in Art and Design, between Kelvin Grove State College, the School of Design Creative Industries Faculty of QUT, and the Design Minds program of the State Library of Queensland. Among other benefits, tertiary and industry partners have brought a myriad of diverse voices into the classrooms, enabled the direct interaction of learners with tertiary student mentors, and with art and design practitioners. The working model has also now matured into formal and informal partner agreements that help guarantee its viability into the future. This presentation, which deals with the opening of new terrain between committed partners, is also the story of how design has gradually been integrated in the curriculum, enriching and expanding the repertoire of Art programs, and how one Visual Art Faculty in a large inner city Brisbane School has adopted design thinking and “metadesign” as a model for future innovation. From the process of interaction and dialogue among educators and practitioners over several years has emerged a conviction that both partnering and design pedagogy are key tools in developing forward thinking curriculum for the Arts. In addition, hammering out a model that works for students across different year levels and in diverse settings by putting ideas into practice and micro-managing this process in studios and workshops has challenged teachers to rethink their own Art pedagogy. Finally, in the ecosystem of Schools and in the wider systems that are now driving change in education, survival for the Arts may depend on the networking and affirmation derived from innovating partners. Our story, the story of committed individuals who have sustained a dialogue across boundaries, may provide a valuable model for other arts educators fighting to retain agency in their schools.
Resumo:
The Australian Government has proposed Internet Service Providers (ISPs) monitor and punish Australians who download and infringe copyright. In a discussion paper circulated by Attorney-General George Brandis, and leaked by Crikey last Friday, the government proposes a sweeping change to Australian copyright law. If implemented, it would force ISPs to take steps to prevent Australians from infringing copyright. What these steps might be is very vague. They could include blocking peer-to-peer traffic, slowing down internet connections, passing on warnings from industry groups, and handing over subscriber details to copyright owners.
Resumo:
The unique alpine-living kea parrot Nestor notabilis has been the focus of numerous cognitive studies, but its communication system has so far been largely neglected. We examined 2,884 calls recorded in New Zealand’s Southern Alps. Based on audio and visual spectrographic differences, these calls were categorised into seven distinct call types: the non-oscillating ‘screech’ contact call and ‘mew’; and the oscillating ‘trill’, ‘chatter’, ‘warble’ and ‘whistle’; and a hybrid ‘screech-trill’. Most of these calls contained aspects that were individually unique, in addition to potentially encoding for an individual’s sex and age. Additionally, for each recording, the sender’s previous and next calls were noted, as well as any response given by conspecifics. We found that the previous and next calls made by the sender were most often of the same type, and that the next most likely preceding and/or following call type was the screech call, a contact call which sounds like the ‘kee-ah’ from which the bird’s name derives. As a social bird capable of covering large distances over visually obstructive terrain, long distance contact calls may be of considerable importance for social cohesion. Contact calls allow kea to locate conspecifics and congregate in temporary groups for social activities. The most likely response to any given call was a screech, usually followed by the same type of call as the initial call made by the sender, although responses differed depending on the age of the caller. The exception was the warble, the kea’s play call, to which the most likely response was another warble. Being the most common call type, as well as the default response to another call, it appears that the ‘contagious’ screech contact call plays a central role in kea vocal communication and social cohesion
Resumo:
"Quanta" was an interactive audio visual installation. Quanta was selected for inclusion in Virtual Terrain 2, an exhibition of the International Digital Art Project in 2008
Resumo:
This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Resumo:
So far in this book, we have seen a large number of methods for generating content for existing games. So, if you have a game already, you could now generate many things for it: maps, levels, terrain, vegetation, weapons, dungeons, racing tracks. But what if you don’t already have a game, and want to generate the game itself? What would you generate, and how? At the heart of any game are its rules. This chapter will discuss representations for game rules of different kinds, along with methods to generate them, and evaluation functions and constraints that help us judge complete games rather than just isolated content artefacts. Our main focus here will be on methods for generating interesting, fun, and/or balanced game rules. However, an important perspective that will permeate the chapter is that game rule encodings and evaluation functions can encode game design expertise and style, and thus help us understand game design. By formalising aspects of the game rules, we define a space of possible rules more precisely than could be done through writing about rules in qualitative terms; and by choosing which aspects of the rules to formalise, we define what aspects of the game are interesting to explore and introduce variation in. In this way, each game generator can be thought of an executable micro-theory of game design, though often a simplified, and sometimes even a caricatured one
Resumo:
This paper presents a framework for synchronising multiple triggered sensors with respect to a local clock using standard computing hardware. Providing sensor measurements with accurate and meaningful timestamps is important for many sensor fusion, state estimation and control applications. Accurately synchronising sensor timestamps can be performed with specialised hardware, however, performing sensor synchronisation using standard computing hardware and non-real-time operating systems is difficult due to inaccurate and temperature sensitive clocks, variable communication delays and operating system scheduling delays. Results show the ability of our framework to estimate time offsets to sub-millisecond accuracy. We also demonstrate how synchronising timestamps with our framework results in a tenfold reduction in image stabilisation error for a vehicle driving on rough terrain. The source code will be released as an open source tool for time synchronisation in ROS.
Resumo:
The literature on humour in teaching frequently defaults to a series of maxims about how it can be used most appropriately: ‘Never tease students', ‘Don't joke about sensitive issues', ‘Never use laughter for disciplinary purposes'. This paper outlines recent research into the boundaries of humour-use within teacher education, which itself forms one part of a large scale, broadly-based study into the use of humour within tertiary teaching. This particular part of the research involves semi-structured, in-depth interviews with university academics. Following the ‘benign violations' theory of humour - wherein, to be funny, a situation/statement must be some kind of a social violation, that violation must be regarded as relatively benign, and the two ideas must be held simultaneously - this paper suggests that the willingness of academics to use particular types of humour in their teaching revolves around the complexities of determining the margins of ‘the benign'. These margins are shaped in part by pedagogic limitations, but also by professional delimitations. In terms of limitations, the boundaries of humour are set by the academic environment of the university, by the characteristics of different cohorts of students, and by what those students are prepare to laugh at. In terms of delimitations, most academics are prepared to tease their student, and many are prepared to use laughter as a form of discipline, however their own humour orientation, academic seniority, and employment security play a large role in determining what kinds of humour will be used, and where boundaries will be set. The central conclusion here is that formal maxims of humour provide little more than vague strategic guidelines, largely failing to account for the complexity of teaching relationships, for the differences between student cohorts, and for the talents and standing of particular teachers.
Resumo:
This paper discusses a number of key issues for the development of robust obstacle detection systems for autonomous mining vehicles. Strategies for obstacle detection are described and an overview of the state-of-the-art in obstacle detection for outdoor autonomous vehicles using lasers is presented, with their applicability to the mining environment noted. The development of an obstacle detection system for a mining vehicle is then detailed. This system uses a 2D laser scanner as the prime sensor and combines dead-reckoning data with laser data to create local terrain maps. The slope of the terrain maps is then used to detect potential obstacles.
Resumo:
This paper discusses a Dumber of key issues for the development of robust, obstacle detection systems for autonomous mining and construction vehicles. A taxonomy of obstacle detection systems is described; An overview of the state-of- the-art in obstacle detection for outdoor autonomous vehicles is presented with their applicability to the mining and construction environments noted. The issue of so-called fail-safe obstacle detection is then discussed. Finally, we describe the development of an obstacle detection system for a mining vehicle.
Resumo:
Purpose – The purpose of this paper is to describe an innovative compliance control architecture for hybrid multi‐legged robots. The approach was verified on the hybrid legged‐wheeled robot ASGUARD, which was inspired by quadruped animals. The adaptive compliance controller allows the system to cope with a variety of stairs, very rough terrain, and is also able to move with high velocity on flat ground without changing the control parameters. Design/methodology/approach – The paper shows how this adaptivity results in a versatile controller for hybrid legged‐wheeled robots. For the locomotion control we use an adaptive model of motion pattern generators. The control approach takes into account the proprioceptive information of the torques, which are applied on the legs. The controller itself is embedded on a FPGA‐based, custom designed motor control board. An additional proprioceptive inclination feedback is used to make the same controller more robust in terms of stair‐climbing capabilities. Findings – The robot is well suited for disaster mitigation as well as for urban search and rescue missions, where it is often necessary to place sensors or cameras into dangerous or inaccessible areas to get a better situation awareness for the rescue personnel, before they enter a possibly dangerous area. A rugged, waterproof and dust‐proof corpus and the ability to swim are additional features of the robot. Originality/value – Contrary to existing approaches, a pre‐defined walking pattern for stair‐climbing was not used, but an adaptive approach based only on internal sensor information. In contrast to many other walking pattern based robots, the direct proprioceptive feedback was used in order to modify the internal control loop, thus adapting the compliance of each leg on‐line.
Resumo:
"The much-anticipated second collection from the 2007 winner of the Thomas Shapcott Prize. Charged with fierce imagination and swift lyricism, Holland-Batt’s cosmopolitan poems reflect a predatory world rife with hazards both real and imagined. Opening with a vision of a leveret’s agonising death by myxomatosis and closing with a lover disappearing into dangerous waters, this collection careens through diverse geographical territory – from haunted post-colonial landscapes in Australia to brutal animal hierarchies in the cloud forests of Nicaragua. Engaging everywhere with questions of violence and loss, erasure and extinction, The Hazards inhabits unsettling terrain, unafraid to veer straight into turbulence."--Publisher website
Resumo:
Movement of malaria across international borders poses a major obstacle to achieving malaria elimination in the 34 countries that have committed to this goal. In border areas, malaria prevalence is often higher than in other areas due to lower access to health services, treatment-seeking behaviour of marginalised populations that typically inhabit border areas, difficulties in deploying prevention programs to hard-to-reach communities, often in difficult terrain, and constant movement of people across porous national boundaries. Malaria elimination in border areas will be challenging, and key to addressing the challenges is strengthening of surveillance activities for rapid identification of any importation or reintroduction of malaria. This could involve taking advantage of technological advances, such as spatial decision support systems, which can be deployed to assist program managers to carry out preventive and reactive measures, and mobile phone technology, which can be used to capture the movement of people in the border areas and likely sources of malaria importation. Additionally, joint collaboration in the prevention and control of cross-border malaria by neighbouring countries, and reinforcement of early diagnosis and prompt treatment are ways forward in addressing the problem of cross-border malaria.
Resumo:
This paper presents a visual SLAM method for temporary satellite dropout navigation, here applied on fixed- wing aircraft. It is designed for flight altitudes beyond typical stereo ranges, but within the range of distance measurement sensors. The proposed visual SLAM method consists of a common localization step with monocular camera resectioning, and a mapping step which incorporates radar altimeter data for absolute scale estimation. With that, there will be no scale drift of the map and the estimated flight path. The method does not require simplifications like known landmarks and it is thus suitable for unknown and nearly arbitrary terrain. The method is tested with sensor datasets from a manned Cessna 172 aircraft. With 5% absolute scale error from radar measurements causing approximately 2-6% accumulation error over the flown distance, stable positioning is achieved over several minutes of flight time. The main limitations are flight altitudes above the radar range of 750 m where the monocular method will suffer from scale drift, and, depending on the flight speed, flights below 50 m where image processing gets difficult with a downwards-looking camera due to the high optical flow rates and the low image overlap.