526 resultados para Telecommunication equipment industry
Resumo:
In 1984, the International Agency for Research on Cancer determined that working in the primary aluminium production process was associated with exposure to certain polycyclic aromatic hydrocarbons (PAHs) that are probably carcinogenic to humans. Key sources of PAH exposure within the occupational environment of a prebake aluminium smelter are processes associated with use of coal-tar pitch. Despite the potential for exposure via inhalation, ingestion and dermal adsorption, to date occupational exposure limits exist only for airborne contaminants. This study, based at a prebake aluminium smelter in Queensland, Australia, compares exposures of workers who came in contact with PAHs from coal-tar pitch in the smelter’s anode plant (n = 69) and cell-reconstruction area (n = 28), and a non-production control group (n = 17). Literature relevant to PAH exposures in industry and methods of monitoring and assessing occupational hazards associated with these compounds are reviewed, and methods relevant to PAH exposure are discussed in the context of the study site. The study utilises air monitoring of PAHs to quantify exposure via the inhalation route and biological monitoring of 1-hydroxypyrene (1-OHP) in urine of workers to assess total body burden from all routes of entry. Exposures determined for similar exposure groups, sampled over three years, are compared with published occupational PAH exposure limits and/or guidelines. Results of paired personal air monitoring samples and samples collected for 1-OHP in urine monitoring do not correlate. Predictive ability of the benzene-soluble fraction (BSF) in personal air monitoring in relation to the 1-OHP levels in urine is poor (adjusted R2 < 1%) even after adjustment for potential confounders of smoking status and use of personal protective equipment. For static air BSF levels in the anode plant, the median was 0.023 mg/m3 (range 0.002–0.250), almost twice as high as in the cell-reconstruction area (median = 0.013 mg/m3, range 0.003–0.154). In contrast, median BSF personal exposure in the anode plant was 0.036 mg/m3 (range 0.003–0.563), significantly lower than the median measured in the reconstruction area (0.054 mg/m3, range 0.003–0.371) (p = 0.041). The observation that median 1-OHP levels in urine were significantly higher in the anode plant than in the reconstruction area (6.62 µmol/mol creatinine, range 0.09–33.44 and 0.17 µmol/mol creatinine, range 0.001–2.47, respectively) parallels the static air measurements of BSF rather than the personal air monitoring results (p < 0.001). Results of air measurements and biological monitoring show that tasks associated with paste mixing and anode forming in the forming area of the anode plant resulted in higher PAH exposure than tasks in the non-forming areas; median 1-OHP levels in urine from workers in the forming area (14.20 µmol/mol creatinine, range 2.02–33.44) were almost four times higher than those obtained from workers in the non-forming area (4.11 µmol/mol creatinine, range 0.09–26.99; p < 0.001). Results justify use of biological monitoring as an important adjunct to existing measures of PAH exposure in the aluminium industry. Although monitoring of 1-OHP in urine may not be an accurate measure of biological effect on an individual, it is a better indicator of total PAH exposure than BSF in air. In January 2005, interim study results prompted a plant management decision to modify control measures to reduce skin exposure. Comparison of 1-OHP in urine from workers pre- and post-modifications showed substantial downward trends. Exposure via the dermal route was identified as a contributor to overall dose. Reduction in 1-OHP urine concentrations achieved by reducing skin exposure demonstrate the importance of exposure via this alternative pathway. Finally, control measures are recommended to ameliorate risk associated with PAH exposure in the primary aluminium production process, and suggestions for future research include development of methods capable of more specifically monitoring carcinogenic constituents of PAH mixtures, such as benzo[a]pyrene.
Resumo:
In the Superannuation/Pension industry ordinary investors entrust their retirement savings to the trustees of the superannuation plan. Investors rely on the trustees to ensure ethical business and risk management practices are implemented to protect their retirement savings. Governance practices ensure the monitoring of ethical risk management (Drennan, 2004). The Australian superannuation industry presents a unique scenario. Legislation requires employers to contribute a minimum of 9% of the employees wage to retirement savings. However, there are no legislated governance standards, although there are standards of recommended governance practices. In this paper, we examine the level of voluntary adoption of governance practices by the trustees of Australian public sector and industry superannuation funds. We also assess whether superannuation governance practices are associated with performance and volatility/riskiness of returns. Survey results show that the majority of superannuation plans adopt recommended governance practices supporting the concept of ethical management of the member’s retirement savings. The examination of governance principles that impact returns and risk show that board size and regular review of conflicts are positively associated with return. Superannuation plans with higher volatility in returns meet more frequently.
Resumo:
Tissue engineering is a young and interdisciplinary scientific discipline but it offers exciting opportunities to improve the quality of health care for hundreds of thousands of patients. Lured by its potential, several start-up companies, pharmaceutical corporations, and medical device enterprises alike are investing heavily in this sector. Invention is a key driver of competition in this sector. In this study, we aim to explain the variation in inventive output across the different firms in the sector. Our major premise is that firms that forge alliances will be able to tap into the expertise of their partners and thus improve their chances of inventive output. We further argue that alliances that enable technology acquisition or learning will enhance the inventive output of firms more than other kinds of alliances. We measure the inventive output of a company by the number of patents filed. On the basis of a preliminary analysis of seven companies, we find support for the hypotheses. We also argue that, to achieve commercial success, firms need to manage time to market (through alliances or otherwise), have a global outlook, nurture their financial resources, and attain critical mass through mergers.
Resumo:
With an increasing level of collaboration amongst researchers, software developers and industry practitioners in the past three decades, building information modelling (BIM) is now recognized as an emerging technological and procedural shift within the architect, engineering and construction (AEC) industry. BIM is not only considered as a way to make a profound impact on the professions of AEC, but is also regarded as an approach to assist the industry to develop new ways of thinking and practice. Despite the widespread development and recognition of BIM, a succinct and systematic review of the existing BIM research and achievement is scarce. It is also necessary to take stock on existing applications and have a fresh look at where BIM should be heading and how it can benefit from the advances being made. This paper first presents a review of BIM research and achievement in AEC industry. A number of suggestions are then made for future research in BIM. This paper maintains that the value of BIM during design and construction phases is well documented over the last decade, and new research needs to expand the level of development and analysis from design/build stage to postconstruction and facility asset management. New research in BIM could also move beyond the traditional building type to managing the broader range of facilities and built assets and providing preventative maintenance schedules for sustainable and intelligent buildings
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
The need to better understand and deal with workplace stress has major implications for the construction industry, especially on a project level, because of its potential to directly impact on site productivity and safety, and ultimately, the achievement of project objectives. While there has been some understanding of the effect of workplace stress within the construction industry, the majority of these studies have explored individual determinants of workplace stress among construction professionals such as architects, engineers, quantity surveyors etc. To date, very little research has focused on workplace stress as encountered by construction site operatives. This is an important research deficiency as construction site operatives typically make up a significant percentage of on-site workforce and contribute most directly to project success. To address this imbalance in research, this paper proposes a theoretical framework to better understand site operatives’ experience of stress from a cultural perspective on three levels: individual, project and organizational which has been largely neglected in previous studies.
Resumo:
This research uses confirmatory factor analysis and structural equation modelling to examine how organizational size - made up of four dimensions - control, resources, trust and complexity - impacts on utilization of industry-led supply chain innovation capacity in a traditional agribusiness industry, the Australian beef industry. It confirms small business rather than larger business accords greater importance to exploiting supply chain dynamic capabilities, particularly in relation to utilizing industry –led supply chain innovation capacity. For small business in Australian beef supply chains, being agile and able to adapt and align their business practices with supply chain partners is integral to ensuring these businesses remain relevant and competitive in this market. In theoretical terms this is supported by authors in the dynamic capabilities literature as they argue these types of capabilities enable organizations to innovate faster (or better), often leading to the creation of newer sources of competitive advantage.
Resumo:
The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.
Resumo:
Efficient and effective urban management systems for Ubiquitous Eco Cities require having intelligent and integrated management mechanisms. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision-making system and necessary infrastructure and technologies. In Ubiquitous Eco Cities telecommunication technologies play an important role in monitoring and managing activities via wired and wireless networks. Particularly, technology convergence creates new ways in which information and telecommunication technologies are used and formed the backbone of urban management. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices and provides new opportunities in the management of Ubiquitous Eco Cities. This chapter discusses developments in telecommunication infrastructure and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities
Resumo:
Real-World Survey practical at Coombabah with GPS surveying; BEE student prizes Evening; Engaging Students in real-world learning at SERF.
Resumo:
The Australian Construction Industry Forum (which is a peak industry association) and the Australian Procurement and Construction Council (which is a peak government organisation) have jointly agreed on a set of KPIs for the Australian Construction Industry. The goal of such a process is to work collaboratively in order to lift industry performance overall, and thereby bring about economic and social benefits to the industry and broader community. This paper seeks to underpin the process of KPI measurement by providing: an overview of international approaches to KPI measurement, summary of difficulties identified in performance measurement together with possible responses to these problems, and finally a discussion on the various methods for reporting KPIs. A number of findings throughout the paper, based on the review, made in order to advance the goal of performance measurement in the construction industry in Australia. Such findings would be relevant to other countries considering a KPI measurement process as well.