821 resultados para TERNARY-SYSTEM
Resumo:
In children, the pain and anxiety associated with acute burn dressing changes can be severe, with drug treatment alone frequently proving to be inadequate. Virtual reality (VR) systems have been successfully trialled in limited numbers of adult and paediatric burn patients. Augmented reality (AR) differs from VR in that it overlays virtual images onto the physical world, instead of creating a complete virtual world. This prospective randomised controlled trial investigated the use of AR as an adjunct to analgesia and sedation in children with acute burns. Forty-two children (30 male and 12 female), with an age range of 3–14 years (median age 9 years) and a total burn surface area ranging from 1 to 16% were randomised into a treatment (AR) arm and a control (basic cognitive therapy) arm after administration of analgesia and/or sedation. Pain scores, pulse rates (PR), respiratory rates (RR) and oxygen saturations (SaO2) were recorded pre-procedurally, at 10 min intervals and post-procedurally. Parents were also asked to grade their child's overall pain score for the dressing change. Mean pain scores were significantly lower (p = 0.0060) in the AR group compared to the control group, as were parental pain assessment scores (p = 0.015). Respiratory and pulse rates showed significant changes over time within groups, however, these were not significantly different between the two study groups. Oxygen saturation did not differ significantly over time or between the two study groups. This trial shows that augmented reality is a useful adjunct to pharmacological analgesia.
Resumo:
This paper proposes a method which aims at increasing the efficiency of enterprise system implementations. First, we argue that existing process modeling languages that feature different degrees of abstraction for different user groups exist and are used for different purposes which makes it necessary to integrate them. We describe how to do this using the meta models of the involved languages. Second, we argue that an integrated process model based on the integrated meta model needs to be configurable and elaborate on the enabling mechanisms. We introduce a business example using SAP modeling techniques to illustrate the proposed method.
Resumo:
After the recent prolonged drought conditions in many parts of Australia it is increasingly recognised that many groundwater systems are under stress. Although this is obvious for systems that are utilised for intensive irrigation many other groundwater systems are also impacted.Management strategies are highly variable to non-existent. Policy and regulation are also often inadequate, and are reactive or politically driven. In addition, there is a wide range of opinion by water users and other stakeholders as to what is “reasonable”management practice. These differences are often related to the “value”that is put on the groundwater resource. Opinions vary from “our right to free water”to an awareness that without effective management the resource will be degraded. There is also often misunderstanding of surface water-groundwater linkages, recharge processes, and baseflow to drainage systems.
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions.
Resumo:
This paper presents the possibility of utilizing a current source topology instead of a voltage source as an efficient, flexible and reliable power supply for plasma applications. A buck-boost converter with a current controller has been used to transfer energy from an inductor to a plasma system. A control strategy has also been designed to satisfy all the desired purposes. The main concept behind this topology is to provide high dv/dt regardless of the switching speed of a power switch and to control the current level to properly transfer adequate energy to various plasma applications.
Resumo:
An algorithm based on the concept of Kalman filtering is proposed in this paper for the estimation of power system signal attributes, like amplitude, frequency and phase angle. This technique can be used in protection relays, digital AVRs, DSTATCOMs, FACTS and other power electronics applications. Furthermore this algorithm is particularly suitable for the integration of distributed generation sources to power grids when fast and accurate detection of small variations of signal attributes are needed. Practical considerations such as the effect of noise, higher order harmonics, and computational issues of the algorithm are considered and tested in the paper. Several computer simulations are presented to highlight the usefulness of the proposed approach. Simulation results show that the proposed technique can simultaneously estimate the signal attributes, even if it is highly distorted due to the presence of non-linear loads and noise.