281 resultados para Structural efficiencies
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.
Resumo:
Modern trains with different axle configurations, speeds and loads are used in railway networks. As a result, one of the most important questions of the mangers involved in bridge managements systems (BMS) is how these changes affect the structural behavior of the critical components of the railway bridges. Although researchers have conducted, many investigations on the dynamic effects of the moving loads on bridges, the influence of the changes in the speed of the train on the demand by capacity ratios of the different critical components of the bridge have not yet been properly studied. This study is important, because different components with different capacities and roles for carrying loads in the structure may be affected differently. To investigate the above phenomenon in this research, a structural model of a simply supported bridge is developed. It will be verified that the dynamic behavior of this bridge is similar to a group of railway bridges in Australia. Demand by capacity ratios of the critical components of the bridge, when it is subjected to a train load with different speeds will be calculated. The results show that the effect of increase or decrease of speed should not be underestimated. The outcome is very significant as it is contrary to what is currently expected, i.e. by reducing the speed of the train, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load.
Resumo:
Morphology changes induced in polycrystalline silver catalysts as a result of heating in either oxygen, water or oxygen-methanol atmospheres have been investigated by environmental scanning electron microscopy (ESEM), FT-Raman spectroscopy and temperature programmed desorption (TPD). The silver catalyst of interest consisted of two distinct particle types, one of which contained a significant concentration of sub-surface hydroxy species (in addition to surface adsorbed atomic oxygen). Heating the sample to 663 K resulted in the production of 'pin-holes' in the silver structure as a consequence of near-surface explosions caused by sub-surface hydroxy recombination. Furthermore, 'pin-holes' were predominantly found in the vicinity of surface defects, such as platelets and edge structures. Reaction between methanol and oxygen also resulted in the formation of 'pin-holes' in the silver surface, which were inherently associated with the catalytic process. A reaction mechanism is suggested that involves the interaction of methanol with sub-surface oxygen species to form sub-surface hydroxy groups. The sub-surface hydroxy species subsequently erupt through the silver surface to again produce 'pin-holes'.
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
The encapsulation and release of bioactive molecules from polymeric vehicles represents the holy grail of drug and growth factor delivery therapies, whereby sustained and controlled release is crucial in eliciting a positive therapeutic effect. To this end, electrospraying is rapidly emerging as a popular technology for the production of polymeric particles containing bioactive molecules. Compared with traditional emulsion fabrication techniques, electrospraying has the potential to reduce denaturation of protein drugs and affords tighter regulation over particle size distribution and morphology. In this article, we review the importance of the electrospraying parameters that enable reproducible tailoring of the particles' physical and in vitro drug release characteristics, along with discussion of existing in vivo data. Controlled morphology and monodispersity of particles can be achieved with electrospraying, with high encapsulation efficiencies and without unfavorable denaturation of bioactive molecules throughout the process. Finally, the combination of electrospraying with electrospun scaffolds, with an emphasis on tissue regeneration is reviewed, depicting a technique in its relative infancy but holding great promise for the future of regenerative medicine.
Resumo:
In this research, we suggest appropriate information technology (IT) governance structures to manage the cloud computing resources. The interest in acquiring IT resources a utility is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to ensure its effective management and fit into existing business processes to leverage the promised opportunities. Using a mixed method design, we identified four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. These governance structures ensure appropriate direction of cloud computing resources from its acquisition to fit into the organizations business processes.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
In this paper, we have investigated on the natural wendwilsonite mineral with the formulae Ca2(Mg,Co)(AsO4)2⋅2(H2O). Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the wendwilsonite arsenate mineral. A comparison is made with the roselite mineral group with formula Ca2B(AsO4)2⋅2H2O (where B may be Co, Fe2+, Mg, Mn, Ni, Zn). The Raman spectra of the arsenate related to tetrahedral arsenate clusters with stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. The Raman arsenate (AsO4)3− stretching region shows strong differences between that of wendwilsonite and the roselite arsenate minerals which is attributed to the cation substitution for calcium in the structure. In the infrared spectra complexity exists of multiple to tetrahedral (AsO4)3− clusters with antisymmetric stretching vibrations observed indicating a reduction of the tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong Raman bands around 450 cm−1 are assigned to ν4 bending modes. Multiple bands in the 350–300 cm−1 region assigned to ν2 bending modes provide evidence of symmetry reduction of the arsenate anion. Three broad bands for wendwilsonite found at 3332, 3119 and 3001 cm−1 are assigned to OH stretching bands. By using a Libowitzky empirical equation, hydrogen bond distances of 2.65 and 2.75 Å are estimated. Vibrational spectra enable the molecular structure of the wendwilsonite mineral to be determined and whilst similarities exist in the spectral patterns with the roselite mineral group, sufficient differences exist to be able to determine the identification of the minerals.
Resumo:
A 3-year longitudinal study Transforming Children’s Mathematical and Scientific Development integrates, through data modelling, a pedagogical approach focused on mathematical patterns and structural relationships with learning in science. As part of this study, a purposive sample of 21 highly able Grade 1 students was engaged in an innovative data modelling program. In the majority of students, representational development was observed. Their complex graphs depicting categorical and continuous data revealed a high level of structure and enabled identification of structural features critical to this development.
Resumo:
Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.
Resumo:
The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.
Resumo:
This paper examines the dynamic behaviour of relative prices across seven Australian cities by applying panel unit root test procedures with structural breaks to quarterly consumer price index data for 1972 Q1–2011 Q4. We find overwhelming evidence of convergence in city relative prices. Three common structural breaks are endogenously determined at 1985, 1995, and 2007. Further, correcting for two potential biases, namely Nickell bias and time aggregation bias, we obtain half-life estimates of 2.3–3.8 quarters that are much shorter than those reported by previous research. Thus, we conclude that both structural breaks and bias corrections are important to obtain shorter half-life estimates.
Resumo:
Structural Dynamics is the study of the response of structures to dynamic or time varying loads. This topic has emerged to be one of importance to all structural engineers due to three important issues with structural engineering in the new millennium. These are: (1) vibration and problems in slender structures that have emerged due to new material technology and aesthetic requirements, (ii) ageing structures such as bridges whoese health needs to be monitored and appropriate retrofitting carried out to prevent failure and (iii) increased vulnerability of structures to random loads such as seismic, impact and blast loads. Knowledge of structural dynamics is necessary to address these issues and their consequences. During the past two decades, research in structural dynamics has generated considerable amount of new information to address these issues. This new knowledge is not readily made available to practicing engineers and very little or none of it enters the classrooms. There is no universal emphasis on including structural dynamics and their recently generated new knowledge into the civil/structural curriculum. This paper argues for the need to include structural dynamics into the syllabus of all civil engineering courses especially those having a first or second major in structural engineering. This will enable our future structural engineers to design and maintain safe and efficient structures.
Resumo:
Early career engineering academics are encouraged to join and contribute to established research groups at the leading edge of their discipline. This is often facilitated by various staff development and support programs. Given that academics are often appointed primarily on the basis of their research skills and outputs, such an approach is justified and is likely to result in advancing the individual academic’s career. It also enhances their capacity to attract competitive research funding, while contributing to the overall research performance of their institution, with further potential for an increased share of government funding. In contrast, there is much less clarity of direction or availability of support mechanisms for those academics in their role as teachers. Following a general induction to teaching and learning at their institution, they would commonly think about preparing some lecture materials, whether for delivery in a face-to-face or on-line modality. Typically they would look for new references and textbooks to act as a guide for preparing the content. They would probably find out how the course has been taught before, and what laboratory facilities and experiments have been used. In all of these and other related tasks, the majority of newly appointed academics are guided strongly by their own experiences as students, rather than any firm knowledge of pedagogical principles. At a time of increased demands on academics’ time, and high expectations of performance and productivity in both research and teaching, it is essential to examine possible actions to support academics in enhancing their teaching performance in effective and efficient ways. Many resources have been produced over the years in engineering schools around the world, with very high intellectual and monetary costs. In Australia, the last few years have seen a surge in the number of ALTC/OLT projects and fellowships addressing a range of engineering education issues and providing many resources. There are concerns however regarding the extent to which these resources are being effectively utilised. Why are academics still re-inventing the wheel and creating their own version of teaching resources and pedagogical practice? Why do they spend so much of their precious time in such an inefficient way? A symposium examining the above issues was conducted at the AAEE2012 conference, and some pointers to possible responses to the above questions were obtained. These are explored in this paper and supplemented by the responses to a survey of a group of engineering education leaders on some of the aspects of these research questions. The outcomes of the workshop and survey results have been analysed in view of the literature and the ALTC/OLT sponsored learning and teaching projects and resources. Other factors are discussed, including how such resources can be found, how their quality might be evaluated, and how assessment may be appropriately incorporated, again using readily available resources. This study found a strong resonance between resources reuse with work on technology acceptance (Davis, 1989), suggesting that technology adoption models could be used to encourage resource sharing. Efficient use of outstanding learning materials is an enabling approach. The paper provides some insights on the factors affecting the re-use of available resources, and makes some recommendations and suggestions on how the issue of resources re-use might be incorporated in the process of applying and completing engineering education projects.