173 resultados para Structural Model
Resumo:
This paper introduces the smooth transition logit (STL) model that is designed to detect and model situations in which there is structural change in the behaviour underlying the latent index from which the binary dependent variable is constructed. The maximum likelihood estimators of the parameters of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants' behaviour to change gradually over time. The main results provide clear evidence in support of a structural change in the nature of price events, and the endogenously determined timing of the change is consistent with the process of deregulation in Queensland.
Resumo:
This paper presents a multi-criteria based approach for nondestructive diagnostic structural integrity assessment of a decommissioned flatbed rail wagon (FBRW) used for road bridge superstructure rehabilitation and replacement applications. First, full-scale vibration and static test data sets are employed in a FE model of the FBRW to obtain the best ‘initial’ estimate of the model parameters. Second, the ‘final’ model parameters are predicted using sensitivity-based perturbation analysis without significant difficulties encountered. Consequently, the updated FBRW model is validated using the independent sets of full-scale laboratory static test data. Finally, the updated and validated FE model of the FBRW is used for structural integrity assessment of a single lane FBRW bridge subjected to the Australian bridge design traffic load.
Resumo:
Having a clear project definition is crucial for successful construction projects. It affects design quality, project communication between stakeholders and final project performance in terms of cost, schedule and quality. This study examines the relationship between project definition and final project performance through a structural equation model comprising 4 latent constructs and 6 path hypotheses using data from a questionnaire survey of 120 general contractors in the Malaysian construction industry. The results show that in the study population, all three items impact the project performance, but the link between design quality and project performance is indirect. Instead, the clarity of project definition affects project performance indirectly through design quality and project communication and design quality affects project performance indirectly through project communication. The primary contribution is to provide quantitative confirmation of the more general statements made in the literature from around the world and therefore adds to and consolidates existing knowledge. Practical implications derived from the finding are also proposed for various project stakeholders. Furthermore, as lack of the clarity of project definition is a very common occurrence in construction projects globally, these findings have important ramifications for all construction projects in expanding and clarifying existing knowledge on what is needed for the successful delivery of construction projects.
Resumo:
Introduction Different types of hallucinations are symptomatic of different conditions. Schizotypal hallucinations are unique in that they follow existing delusional narrative patterns: they are often bizarre, they are generally multimodal, and they are particularly vivid (the experience of a newsreader abusing you personally over the TV is both visual and aural. Patients who feel and hear silicone chips under their skin suffer from haptic hallucinations as well as aural ones, etc.) Although there are a number of hypotheses for hallucinations, few cogently grapple the sheer bizarreness of the ones experienced in schizotypal psychosis. Methods A review-based hypothesis, traversing theory from the molecular level to phenomenological expression as a distinct and recognizable symptomatology. Conclusion Hallucinations appear to be caused by a two-fold dysfunction in the mesofrontal dopamine pathway, which is considered here to mediate attention of different types: in the anterior medial frontal lobe, the receptors (largely D1 type) mediate declarative awareness, whereas the receptors in the striatum (largely D2 type) mediate latent awareness of known schemata. In healthy perception, most of the perceptual load is performed by the latter: by the top-down predictive and mimetic engine, with the bottom-up mechanism being used as a secondary tool to bring conscious deliberation to stimuli that fails to match up against expectations. In schizophrenia, the predictive mode is over-stimulated, while the bottom-up feedback mechanism atrophies. The dysfunctional distribution pattern effectively confines dopamine activity to the striatum, thereby stimulating the structural components of thought and behaviour: well-learned routines, narrative structures, lexica, grammar, schemata, archetypes, and other procedural resources. Meanwhile, the loss of activity in the frontal complex reduces the capacity for declarative awareness and for processing anything that fails to meet expectations.
Resumo:
It is important to develop reliable finite element models for real structures not only in the design phase but also for the structural health monitoring and structural maintenance purposes. This paper describes the experience of the authors in using ambient vibration model identification techniques together with model updating tools to develop reliable finite element models of real civil engineering structures. Case studies of two real structures are presented in this paper. One is a 10 storey concrete building which is considered as a non-slender structure with complex boundary conditions. The other is a single span concrete foot bridge which is also a relatively inflexible planar structure with complex boundary conditions. Both structures are located at the Queensland University of Technology (QUT) and equipped with continuous structural health monitoring systems.
Resumo:
This paper documents the longitudinal and reciprocal relations among behavioral sleep problems, emotional and attentional self-regulation in a population sample of 4109 children participating in the Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort. Maternal reports of children’s sleep problems and self-regulation were collected at five time points from infancy to 8-9 years of age. Longitudinal structural equation modeling supported a developmental cascade model in which sleep problems have a persistent negative effect on emotional regulation, which in turn contributes to ongoing sleep problems and poorer attentional regulation in children over time. Findings suggest that sleep behaviors are a key target for interventions that aim to improve children’s self-regulatory capacities.
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
Introduction: Ankylosing spondylitis (AS) is unique in its pathology where inflammation commences at the entheses before progressing to an osteoproliferative phenotype generating excessive bone formation that can result in joint fusion. The underlying mechanisms of this progression are poorly understood. Recent work has suggested that changes in Wnt signalling, a key bone regulatory pathway, may contribute to joint ankylosis in AS. Using the proteoglycan-induced spondylitis (PGISp) mouse model which displays spondylitis and eventual joint fusion following an initial inflammatory stimulus, we have characterised the structural and molecular changes that underlie disease progression. Methods: PGISp mice were characterised 12 weeks after initiation of inflammation using histology, immunohistochemistry (IHC) and expression profiling. Results: Inflammation initiated at the periphery of the intervertebral discs progressing to disc destruction followed by massively excessive cartilage and bone matrix formation, as demonstrated by toluidine blue staining and IHC for collagen type I and osteocalcin, leading to syndesmophyte formation. Expression levels of DKK1 and SOST, Wnt signalling inhibitors highly expressed in joints, were reduced by 49% and 63% respectively in the spine PGISp compared with control mice (P < 0.05) with SOST inhibition confirmed by IHC. Microarray profiling showed genes involved in inflammation and immune-regulation were altered. Further, a number of genes specifically involved in bone regulation including other members of the Wnt pathway were also dysregulated. Conclusions: This study implicates the Wnt pathway as a likely mediator of the mechanism by which inflammation induces bony ankylosis in spondyloarthritis, raising the potential that therapies targeting this pathway may be effective in preventing this process.
Resumo:
Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.
Resumo:
HIV risk in vulnerable groups such as itinerant male street labourers is often examined via a focus on individual determinants. This study provides a test of a modified Information-Motivation-Behavioral Skills (IMB) model to predict condom use behaviour among male street workers in urban Vietnam. In a cross-sectional survey using a social mapping technique, 450 male street labourers from 13 districts of Hanoi, Vietnam were recruited and interviewed. Collected data were first examined for completeness; structural equation modelling was then employed to test the model fit. Condoms were used inconsistently by many of these men, and usage varied in relation to a number of factors. A modified IMB model had a better fit than the original IMB model in predicting condom use behaviour. This modified model accounted for 49% of the variance, versus 10% by the original version. In the modified model, the influence of psychosocial factors was moderately high, whilst the influence of HIV prevention information, motivation and perceived behavioural skills was moderately low, explaining in part the limited level of condom use behaviour. This study provides insights into social factors that should be taken into account in public health planning to promote safer sexual behaviour among Asian male street labourers.
Resumo:
Background: More than half of all cerebral ischemic events are the result of rupture of extracranial plaques. The clinical determination of carotid plaque vulnerability is currently based solely on luminal stenosis; however, it has been increasingly suggested that plaque morphology and biomechanical stress should also be considered. We used finite element analysis based on in vivo magnetic resonance imaging (MRI) to simulate the stress distributions within plaques of asymptomatic and symptomatic individuals. Methods: Thirty nonconsecutive subjects (15 symptomatic and 15 asymptomatic) underwent high-resolution multisequence in vivo MRI of the carotid bifurcation. Stress analysis was performed based on the geometry derived from in vivo MRI of the carotid artery at the point of maximal stenosis. The finite element analysis model considered plaque components to be hyperelastic. The peak stresses within the plaques of symptomatic and asymptomatic individuals were compared. Results: High stress concentrations were found at the shoulder regions of symptomatic plaques, and the maximal stresses predicted in this group were significantly higher than those in the asymptomatic group (508.2 ± 193.1 vs 269.6 ± 107.9 kPa; P = .004). Conclusions: Maximal predicted plaque stresses in symptomatic patients were higher than those predicted in asymptomatic patients by finite element analysis, suggesting the possibility that plaques with higher stresses may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, biomechanical stress analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma. It may help in the identification of patients with asymptomatic carotid atheroma at greatest risk of developing symptoms or mild-to-moderate symptomatic stenoses, which currently fall outside current clinical guidelines for intervention.