499 resultados para Signature Verification, Forgery Detection, Fuzzy Modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite changes in surgical techniques, radiotherapy targeting and the apparent earlier detection of cancers, secondary lymphoedema is still a significant problem for about 20–30% of those who receive treatment for cancer, although the incidence and prevalence does seem to be falling. The figures above generally relate to detection of an enlarged limb or other area, but it seems that about 60% of all patients also suffer other problems with how the limb feels, what can or cannot be done with it and a range of social or psychological issues. Often these ‘subjective’ changes occur before the objective ones, such as a change in arm volume or circumference. For most of those treated for cancer lymphoedema does not develop immediately, and, while about 60–70% develop it in the first few years, some do not develop lymphoedema for up to 15 or 20 years. Those who will develop clinically manifest lymphoedema in the future are, for some time, in a latent or hidden phase of lymphoedema. There also seems to be some risk factors which are indicators for a higher likelihood of lymphoedema post treatment, including oedema at the surgical site, arm dominance, age, skin conditions, and body mass index (BMI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the widespread applications of electronic learning (e-Learning) technologies to education at all levels, increasing number of online educational resources and messages are generated from the corresponding e-Learning environments. Nevertheless, it is quite difficult, if not totally impossible, for instructors to read through and analyze the online messages to predict the progress of their students on the fly. The main contribution of this paper is the illustration of a novel concept map generation mechanism which is underpinned by a fuzzy domain ontology extraction algorithm. The proposed mechanism can automatically construct concept maps based on the messages posted to online discussion forums. By browsing the concept maps, instructors can quickly identify the progress of their students and adjust the pedagogical sequence on the fly. Our initial experimental results reveal that the accuracy and the quality of the automatically generated concept maps are promising. Our research work opens the door to the development and application of intelligent software tools to enhance e-Learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accuracy of data derived from linked-segment models depends on how well the system has been represented. Previous investigations describing the gait of persons with partial foot amputation did not account for the unique anthropometry of the residuum or the inclusion of a prosthesis and footwear in the model and, as such, are likely to have underestimated the magnitude of the peak joint moments and powers. This investigation determined the effect of inaccuracies in the anthropometric input data on the kinetics of gait. Toward this end, a geometric model was developed and validated to estimate body segment parameters of various intact and partial feet. These data were then incorporated into customized linked-segment models, and the kinetic data were compared with that obtained from conventional models. Results indicate that accurate modeling increased the magnitude of the peak hip and knee joint moments and powers during terminal swing. Conventional inverse dynamic models are sufficiently accurate for research questions relating to stance phase. More accurate models that account for the anthropometry of the residuum, prosthesis, and footwear better reflect the work of the hip extensors and knee flexors to decelerate the limb during terminal swing phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast and accurate procedure has been researched and developed for the simultaneous determination of maltol and ethyl maltol, based on their reaction with iron(III) in the presence of o-phenanthroline in sulfuric acid medium. This reaction was the basis for an indirect kinetic spectrophotometric method, which followed the development of the pink ferroin product (λmax = 524 nm). The kinetic data were collected in the 370–900 nm range over 0–30 s. The optimized method indicates that individual analytes followed Beer’s law in the concentration range of 4.0–76.0 mg L−1 for both maltol and ethyl maltol. The LOD values of 1.6 mg L−1 for maltol and 1.4 mg L−1 for ethyl maltol agree well with those obtained by the alternative high performance liquid chromatography with ultraviolet detection (HPLC-UV). Three chemometrics methods, principal component regression (PCR), partial least squares (PLS) and principal component analysis–radial basis function–artificial neural networks (PC–RBF–ANN), were used to resolve the measured data with small kinetic differences between the two analytes as reflected by the development of the pink ferroin product. All three performed satisfactorily in the case of the synthetic verification samples, and in their application for the prediction of the analytes in several food products. The figures of merit for the analytes based on the multivariate models agreed well with those from the alternative HPLC-UV method involving the same samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports preliminary results from a study modeling the interplay between multitasking, cognitive coordination, and cognitive shifts during Web search. Study participants conducted three Web searches on personal information problems. Data collection techniques included pre- and post-search questionnaires; think-aloud protocols, Web search logs, observation, and post-search interviews. Key findings include: (1) users Web searches included multitasking, cognitive shifting and cognitive coordination processes, (2) cognitive coordination is the hinge linking multitasking and cognitive shifting that enables Web search construction, (3) cognitive shift levels determine the process of cognitive coordination, and (4) cognitive coordination is interplay of task, mechanism and strategy levels that underpin multitasking and task switching. An initial model depicts the interplay between multitasking, cognitive coordination, and cognitive shifts during Web search. Implications of the findings and further research are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development and preliminary experimental evaluation of a visionbased docking system to allow an Autonomous Underwater Vehicle (AUV) to identify and attach itself to a set of uniquely identifiable targets. These targets, docking poles, are detected using Haar rectangular features and rotation of integral images. A non-holonomic controller allows the Starbug AUV to orient itself with respect to the target whilst maintaining visual contact during the manoeuvre. Experimental results show the proposed vision system is capable of robustly identifying a pair of docking poles simultaneously in a variety of orientations and lighting conditions. Experiments in an outdoor pool show that this vision system enables the AUV to dock autonomously from a distance of up to 4m with relatively low visibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Influenza is commonly spread by infectious aerosols; however, detection of viruses in aerosols is not sensitive enough to confirm the characteristics of virus aerosols. The aim of this study was to develop an assay for respiratory viruses sufficiently sensitive to be used in epidemiological studies. Method: A two-step, nested real-time PCR assay was developed for MS2 bacteriophage, and for influenza A and B, parainfluenza 1 and human respiratory syncytial virus. Outer primer pairs were designed to nest each existing real-time PCR assay. The sensitivities of the nested real-time PCR assays were compared to those of existing real-time PCR assays. Both assays were applied in an aerosol study to compare their detection limits in air samples. Conclusions: The nested real-time PCR assays were found to be several logs more sensitive than the real-time PCR assays, with lower levels of virus detected at lower Ct values. The nested real-time PCR assay successfully detected MS2 in air samples, whereas the real-time assay did not. Significance and Impact of the Study: The sensitive assays for respiratory viruses will permit further research using air samples from naturally generated virus aerosols. This will inform current knowledge regarding the risks associated with the spread of viruses through aerosol transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aetiology of secondary lymphoedema seems to be multifactorial, with acquired abnormalities as well as pre-existing conditions being contributory factors. Many characteristics bear inconsistent relationships to lymphoedema risk, and the few that are consistently associated with an increased risk of developing the condition, do not alone distinguish the at-risk population. Further, our current prevention and management recommendations are not backed by strong evidence. Consequently, there remains much to be learned about who gets it, how can it be prevented and how can we best treat it. Nonetheless, it is clear that lymphoedema is associated with adverse side effects, which have a profound impact on daily life, and that preliminary evidence suggests that early detection may lead to more effective treatment and lack of treatment may lead to progression. These represent important reasons as to why lymphoedema deserves clinical attention. However, several pragmatic issues must be considered when discussing whether a routine objective measure of lymphoedema could be integrated among the standard clinical care of those undertaking treatment for cancers known to be associated with the development of lymphoedema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates the versatility of dataset refinement in the task of selecting suitable impostor datasets for use in GMM-based speaker verification. The use of refined Z- and T-norm datasets provided performance gains of 15% in EER in the NIST 2006 SRE over the use of heuristically selected datasets. The refined datasets were shown to generalise well to the unseen data of the NIST 2008 SRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A data-driven background dataset refinement technique was recently proposed for SVM based speaker verification. This method selects a refined SVM background dataset from a set of candidate impostor examples after individually ranking examples by their relevance. This paper extends this technique to the refinement of the T-norm dataset for SVM-based speaker verification. The independent refinement of the background and T-norm datasets provides a means of investigating the sensitivity of SVM-based speaker verification performance to the selection of each of these datasets. Using refined datasets provided improvements of 13% in min. DCF and 9% in EER over the full set of impostor examples on the 2006 SRE corpus with the majority of these gains due to refinement of the T-norm dataset. Similar trends were observed for the unseen data of the NIST 2008 SRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process modeling grammars are used by analysts to describe information systems domains in terms of the business operations an organization is conducting. While prior research has examined the factors that lead to continued usage behavior, little knowledge has been established as to what extent characteristics of the users of process modeling grammars inform usage behavior. In this study, a theoretical model is advanced that incorporates determinants of continued usage behavior as well as key antecedent individual difference factors of the grammar users, such as modeling experience, modeling background and perceived grammar familiarity. Findings from a global survey of 529 grammar users support the hypothesized relationships of the model. The study offers three central contributions. First, it provides a validated theoretical model of post-adoptive modeling grammar usage intentions. Second, it discusses the effects of individual difference factors of grammar users in the context of modeling grammar usage. Third, it provides implications for research and practice.