164 resultados para Sensor Data Fusion Applicazioni
Resumo:
Introduction. Rett Syndrome is a rare genetic neurodevelopmental disorder usually affecting females. Scoliosis is a common comorbidity and spinal fusion may be recommended if severe. Little is known about long term outcomes. We examined the impact of spinal fusion on survival and risk of severe lower respiratory tract infection (LRTI) in Rett Syndrome. Methods Data were ascertained from hospital medical records, the Australian Rett Syndrome Database, a longitudinal and population-based registry of Rett Syndrome cases established in 1993, and the Australian Institute of Health and Welfare National Death Index database. An extended Cox regression model was used to estimate the effect of spinal surgery on survival in females who developed severe scoliosis (Cobb angle > 45 degrees). Generalized estimating equation modelling was used to estimate the effect of spinal surgery on the odds of developing severe LRTI. Results Severe scoliosis was identified in 140 cases (60.3%) of whom slightly fewer than half (48.6%) developed scoliosis prior to eight years of age. Scoliosis surgery was performed in 98 (69.0%) of those at a median age of 13 years 3 months (IQR 11 years 5 months – 14 years 10 months). After adjusting for mutation type and age of scoliosis onset, the rate of death was lower in the surgery group (HR 0.30, 95% CI 0.12, 0.74, P = 0.009) compared to those without surgery. Rate of death was particularly reduced for those with early onset scoliosis (HR 0.17, 95% CI 0.06, 0.52, P = 0.002). Spinal fusion was not associated with reduction in the occurrence of a severe LRTI overall (OR 0.60, 95%CI 0.27, 1.33, P=0.206) but was associated with a large reduction in odds of severe LRTI among those with early onset scoliosis (OR 0.32, 95%CI 0.11, 0.93, P=0.036). Conclusion With appropriate cautions, spinal fusion confers an advantage to life expectancy in Rett syndrome.
Resumo:
A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.
Resumo:
Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training.
Resumo:
Study Design Retrospective review of prospectively collected data. Objectives To analyze intervertebral (IV) fusion after thoracoscopic anterior spinal fusion (TASF) and explore the relationship between fusion scores and key clinical variables. Summary of Background Information TASF provides comparable correction with some advantages over posterior approaches but reported mechanical complications, and their relationship to non-union and graft material is unclear. Similarly, the optimal combination of graft type and implant stiffness for effecting successful radiologic union remains undetermined. Methods A subset of patients from a large single-center series who had TASF for progressive scoliosis underwent low-dose computed tomographic scans 2 years after surgery. The IV fusion mass in the disc space was assessed using the 4-point Sucato scale, where 1 indicates <50% and 4 indicates 100% bony fusion of the disc space. The effects of rod diameter, rod material, graft type, fusion level, and mechanical complications on fusion scores were assessed. Results Forty-three patients with right thoracic major curves (mean age 14.9 years) participated in the study. Mean fusion scores for patient subgroups ranged from 1.0 (IV levels with rod fractures) to 2.2 (4.5-mm rod with allograft), with scores tending to decrease with increasing rod size and stiffness. Graft type (autograft vs. allograft) did not affect fusion scores. Fusion scores were highest in the middle levels of the rod construct (mean 2.52), dropping off by 20% to 30% toward the upper and lower extremities of the rod. IV levels where a rod fractured had lower overall mean fusion scores compared to levels without a fracture. Mean total Scoliosis Research Society (SRS) questionnaire scores were 98.9 from a possible total of 120, indicating a good level of patient satisfaction. Conclusions Results suggest that 100% radiologic fusion of the entire disc space is not necessary for successful clinical outcomes following thoracoscopic anterior selective thoracic fusion.
Resumo:
Background Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. Results We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76 %) of these fusion transcripts were ‘read-through chimeras’ derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76 %) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85 %) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. Conclusions Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.
Resumo:
Aim Scoliosis is a common co-morbidity in Rett syndrome and spinal fusion may be recommended if severe. We investigated the impact of spinal fusion on survival and risk of severe lower respiratory tract infection in Rett syndrome. Method Data were ascertained from hospital medical records, the Australian Rett Syndrome Database, a longitudinal and population-based registry, and from the Australian Institute of Health and Welfare National Death Index database. Cox regression and generalized estimating equation models were used to estimate the effects of spinal surgery on survival and severe respiratory infection respectively in 140 females who developed severe scoliosis (Cobb angle ≥45°) before adulthood. Results After adjusting for mutation type and age of scoliosis onset, the rate of death was lower in the surgery group (hazard ratio [HR] 0.30, 95% confidence interval [CI] 0.12–0.74; p=0.009) compared to those without surgery. Rate of death was particularly reduced for those with early onset scoliosis (HR 0.17, 95% CI 0.06–0.52; p=0.002). There was some evidence to suggest that spinal fusion was associated with a reduction in risk of severe respiratory infection among those with early onset scoliosis (risk ratio 0.41, 95% CI 0.16–1.03; p=0.06). Interpretation With appropriate cautions, spinal fusion confers an advantage to life expectancy in Rett syndrome.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.
Resumo:
Background Several prospective studies have suggested that gait and plantar pressure abnormalities secondary to diabetic peripheral neuropathy contributes to foot ulceration. There are many different methods by which gait and plantar pressures are assessed and currently there is no agreed standardised approach. This study aimed to describe the methods and reproducibility of three-dimensional gait and plantar pressure assessments in a small subset of participants using pre-existing protocols. Methods Fourteen participants were conveniently sampled prior to a planned longitudinal study; four patients with diabetes and plantar foot ulcers, five patients with diabetes but no foot ulcers and five healthy controls. The repeatability of measuring key biomechanical data was assessed including the identification of 16 key anatomical landmarks, the measurement of seven leg dimensions, the processing of 22 three-dimensional gait parameters and the analysis of four different plantar pressures measures at 20 foot regions. Results The mean inter-observer differences were within the pre-defined acceptable level (<7 mm) for 100 % (16 of 16) of key anatomical landmarks measured for gait analysis. The intra-observer assessment concordance correlation coefficients were > 0.9 for 100 % (7 of 7) of leg dimensions. The coefficients of variations (CVs) were within the pre-defined acceptable level (<10 %) for 100 % (22 of 22) of gait parameters. The CVs were within the pre-defined acceptable level (<30 %) for 95 % (19 of 20) of the contact area measures, 85 % (17 of 20) of mean plantar pressures, 70 % (14 of 20) of pressure time integrals and 55 % (11 of 20) of maximum sensor plantar pressure measures. Conclusion Overall, the findings of this study suggest that important gait and plantar pressure measurements can be reliably acquired. Nearly all measures contributing to three-dimensional gait parameter assessments were within predefined acceptable limits. Most plantar pressure measurements were also within predefined acceptable limits; however, reproducibility was not as good for assessment of the maximum sensor pressure. To our knowledge, this is the first study to investigate the reproducibility of several biomechanical methods in a heterogeneous cohort.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Flood extent mapping is a basic tool for flood damage assessment, which can be done by digital classification techniques using satellite imageries, including the data recorded by radar and optical sensors. However, converting the data into the information we need is not a straightforward task. One of the great challenges involved in the data interpretation is to separate the permanent water bodies and flooding regions, including both the fully inundated areas and the wet areas where trees and houses are partly covered with water. This paper adopts the decision fusion technique to combine the mapping results from radar data and the NDVI data derived from optical data. An improved capacity in terms of identifying the permanent or semi-permanent water bodies from flood inundated areas has been achieved. Computer software tools Multispec and Matlab were used.
Resumo:
Imbalance is not only a direct major cause of downtime in wind turbines, but also accelerates the degradation of neighbouring and downstream components (e.g. main bearing, generator). Along with detection, the imbalance quantification is also essential as some residual imbalance always exist even in a healthy turbine. Three different commonly used sensor technologies (vibration, acoustic emission and electrical measurements) are investigated in this work to verify their sensitivity to different imbalance grades. This study is based on data obtained by experimental tests performed on a small scale wind turbine drive train test-rig for different shaft speeds and imbalance levels. According to the analysis results, electrical measurements seem to be the most suitable for tracking the development of imbalance.
Resumo:
Mobile applications are being increasingly deployed on a massive scale in various mobile sensor grid database systems. With limited resources from the mobile devices, how to process the huge number of queries from mobile users with distributed sensor grid databases becomes a critical problem for such mobile systems. While the fundamental semantic cache technique has been investigated for query optimization in sensor grid database systems, the problem is still difficult due to the fact that more realistic multi-dimensional constraints have not been considered in existing methods. To solve the problem, a new semantic cache scheme is presented in this paper for location-dependent data queries in distributed sensor grid database systems. It considers multi-dimensional constraints or factors in a unified cost model architecture, determines the parameters of the cost model in the scheme by using the concept of Nash equilibrium from game theory, and makes semantic cache decisions from the established cost model. The scenarios of three factors of semantic, time and locations are investigated as special cases, which improve existing methods. Experiments are conducted to demonstrate the semantic cache scheme presented in this paper for distributed sensor grid database systems.