153 resultados para Semantic Uncertainty
Resumo:
Mobile applications are being increasingly deployed on a massive scale in various mobile sensor grid database systems. With limited resources from the mobile devices, how to process the huge number of queries from mobile users with distributed sensor grid databases becomes a critical problem for such mobile systems. While the fundamental semantic cache technique has been investigated for query optimization in sensor grid database systems, the problem is still difficult due to the fact that more realistic multi-dimensional constraints have not been considered in existing methods. To solve the problem, a new semantic cache scheme is presented in this paper for location-dependent data queries in distributed sensor grid database systems. It considers multi-dimensional constraints or factors in a unified cost model architecture, determines the parameters of the cost model in the scheme by using the concept of Nash equilibrium from game theory, and makes semantic cache decisions from the established cost model. The scenarios of three factors of semantic, time and locations are investigated as special cases, which improve existing methods. Experiments are conducted to demonstrate the semantic cache scheme presented in this paper for distributed sensor grid database systems.
Resumo:
In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot with-out environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot’s behaviour during navigation tasks. The system is made available to the community as a ROS module.
Resumo:
This research explored the feasibility of using multidimensional scaling (MDS) analysis in novel combination with other techniques to study comprehension of epistemic adverbs expressing doubt and certainty (e.g., evidently, obviously, probably) as they relate to health communication in clinical settings. In Study 1, Australian English speakers performed a dissimilarity-rating task with sentence pairs containing the target stimuli, presented as "doctors' opinions". Ratings were analyzed using a combination of cultural consensus analysis (factor analysis across participants), weighted-data classical-MDS, and cluster analysis. Analyses revealed strong within-community consistency for a 3-dimensional semantic space solution that took into account individual differences, strong statistical acceptability of the MDS results in terms of stress and explained variance, and semantic configurations that were interpretable in terms of linguistic analyses of the target adverbs. The results confirmed the feasibility of using MDS in this context. Study 2 replicated the results with Canadian English speakers on the same task. Semantic analyses and stress decomposition analysis were performed on the Australian and Canadian data sets, revealing similarities and differences between the two groups. Overall, the results support using MDS to study comprehension of words critical for health communication, including in future studies, for example, second language speaking patients and/or practitioners. More broadly, the results indicate that the techniques described should be promising for comprehension studies in many communicative domains, in both clinical settings and beyond, and including those targeting other aspects of language and focusing on comparisons across different speech communities.