342 resultados para Search image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interfaces

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting query reformulations within a session by a Web searcher is an important area of research for designing more helpful searching systems and targeting content to particular users. Methods explored by other researchers include both qualitative (i.e., the use of human judges to manually analyze query patterns on usually small samples) and nondeterministic algorithms, typically using large amounts of training data to predict query modification during sessions. In this article, we explore three alternative methods for detection of session boundaries. All three methods are computationally straightforward and therefore easily implemented for detection of session changes. We examine 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. We compare session analysis using (a) Internet Protocol address and cookie; (b) Internet Protocol address, cookie, and a temporal limit on intrasession interactions; and (c) Internet Protocol address, cookie, and query reformulation patterns. Overall, our analysis shows that defining sessions by query reformulation along with Internet Protocol address and cookie provides the best measure, resulting in an 82% increase in the count of sessions. Regardless of the method used, the mean session length was fewer than three queries, and the mean session duration was less than 30 min. Searchers most often modified their query by changing query terms (nearly 23% of all query modifications) rather than adding or deleting terms. Implications are that for measuring searching traffic, unique sessions may be a better indicator than the common metric of unique visitors. This research also sheds light on the more complex aspects of Web searching involving query modifications and may lead to advances in searching tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discovering proper search intents is a vi- tal process to return desired results. It is constantly a hot research topic regarding information retrieval in recent years. Existing methods are mainly limited by utilizing context-based mining, query expansion, and user profiling techniques, which are still suffering from the issue of ambiguity in search queries. In this pa- per, we introduce a novel ontology-based approach in terms of a world knowledge base in order to construct personalized ontologies for identifying adequate con- cept levels for matching user search intents. An iter- ative mining algorithm is designed for evaluating po- tential intents level by level until meeting the best re- sult. The propose-to-attempt approach is evaluated in a large volume RCV1 data set, and experimental results indicate a distinct improvement on top precision after compared with baseline models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Chapter 10, Adam and Dougherty describe the application of medical image processing to the assessment and treatment of spinal deformity, with a focus on the surgical treatment of idiopathic scoliosis. The natural history of spinal deformity and current approaches to surgical and non-surgical treatment are briefly described, followed by an overview of current clinically used imaging modalities. The key metrics currently used to assess the severity and progression of spinal deformities from medical images are presented, followed by a discussion of the errors and uncertainties involved in manual measurements. This provides the context for an analysis of automated and semi-automated image processing approaches to measure spinal curve shape and severity in two and three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%- 80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, everyone can effortlessly access a range of information on the World Wide Web (WWW). As information resources on the web continue to grow tremendously, it becomes progressively more difficult to meet high expectations of users and find relevant information. Although existing search engine technologies can find valuable information, however, they suffer from the problems of information overload and information mismatch. This paper presents a hybrid Web Information Retrieval approach allowing personalised search using ontology, user profile and collaborative filtering. This approach finds the context of user query with least user’s involvement, using ontology. Simultaneously, this approach uses time-based automatic user profile updating with user’s changing behaviour. Subsequently, this approach uses recommendations from similar users using collaborative filtering technique. The proposed method is evaluated with the FIRE 2010 dataset and manually generated dataset. Empirical analysis reveals that Precision, Recall and F-Score of most of the queries for many users are improved with proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing Collaborative Filtering (CF) technique that has been widely applied by e-commerce sites requires a large amount of ratings data to make meaningful recommendations. It is not directly applicable for recommending products that are not frequently purchased by users, such as cars and houses, as it is difficult to collect rating data for such products from the users. Many of the e-commerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user's query are retrieved and recommended to the user. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their online navigation behaviour. This paper proposes to integrate collaborative filtering and search-based techniques to provide personalized recommendations for infrequently purchased products. Two different techniques are proposed, namely CFRRobin and CFAg Query. Instead of using the target user's query to search for products as normal search based systems do, the CFRRobin technique uses the products in which the target user's neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAg Query technique uses the products that the user's neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAg Query perform better than the standard Collaborative Filtering (CF) and the Basic Search (BS) approaches, which are widely applied by the current e-commerce applications. The CFRRobin and CFAg Query approaches also outperform the e- isting query expansion (QE) technique that was proposed for recommending infrequently purchased products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three types of shop scheduling problems, the flow shop, the job shop and the open shop scheduling problems, have been widely studied in the literature. However, very few articles address the group shop scheduling problem introduced in 1997, which is a general formulation that covers the three above mentioned shop scheduling problems and the mixed shop scheduling problem. In this paper, we apply tabu search to the group shop scheduling problem and evaluate the performance of the algorithm on a set of benchmark problems. The computational results show that our tabu search algorithm is typically more efficient and faster than the other methods proposed in the literature. Furthermore, the proposed tabu search method has found some new best solutions of the benchmark instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of face recognition on video by employing the recently proposed probabilistic linear discrimi-nant analysis (PLDA). The PLDA has been shown to be robust against pose and expression in image-based face recognition. In this research, the method is extended and applied to video where image set to image set matching is performed. We investigate two approaches of computing similarities between image sets using the PLDA: the closest pair approach and the holistic sets approach. To better model face appearances in video, we also propose the heteroscedastic version of the PLDA which learns the within-class covariance of each individual separately. Our experi-ments on the VidTIMIT and Honda datasets show that the combination of the heteroscedastic PLDA and the closest pair approach achieves the best performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article sets the context for this special themed issue on the 'Korean digital wave' by considering the symbiotic relationship between digital technologies, their techniques and practices, their uses and the affordances they provide, and Korea's 'compressed modernity' and swift industrialisation. It underscores the importance of interrogating a range of groundbreaking developments and innovations within Korea's digital mediascapes, and its creative and cultural industries, in order to gain a complex understanding of one of Australia's most significant export markets and trading partners. Given the financial and political commitment in Australia to a high-speed broadband network that aims to stimulate economic and cultural activity, recent technological developments in Korea, and the double-edged role played by government policy in shaping the 'Korean digital wave', merit close attention from media and communications scholars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While researchers strive to improve automatic face recognition performance, the relationship between image resolution and face recognition performance has not received much attention. This relationship is examined systematically and a framework is developed such that results from super-resolution techniques can be compared. Three super-resolution techniques are compared with the Eigenface and Elastic Bunch Graph Matching face recognition engines. Parameter ranges over which these techniques provide better recognition performance than interpolated images is determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an image-based visual servoing system that was used to track the atmospheric Earth re-entry of Hayabusa. The primary aim of this ground based tracking platform was to record the emission spectrum radiating from the superheated gas of the shock layer and the surface of the heat shield during re-entry. To the author's knowledge, this is the first time that a visual servoing system has successfully tracked a super-orbital re-entry of a spacecraft and recorded its pectral signature. Furthermore, we improved the system by including a simplified dynamic model for feed-forward control and demonstrate improved tracking performance on the International Space Station (ISS). We present comparisons between simulation and experimental results on different target trajectories including tracking results from Hayabusa and ISS. The required performance for tracking both spacecraft is demanding when combined with a narrow field of view (FOV). We also briefly discuss the preliminary results obtained from the spectroscopy of the Hayabusa's heat shield during re-entry.