219 resultados para SILICA COMPOSITE MEMBRANES
Resumo:
This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.
Resumo:
Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial cells (HCE). Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell- attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favours the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material.
Resumo:
This research is carried out by using finite element modelling of building prototypes with three different layouts (rectangular, octagonal and L-shaped) for three different heights (98.0 m, 147.0 m and 199.5 m) for the optimization of lateral load-resisting systems in composite high-rise buildings. Variations of lateral bracings (different number and varied placement along model height of belt-truss and outrigger floors) with RCC (reinforced cement concrete) core wall are used in composite high-rise building models. Prototypes of composite buildings are analysed for dynamic wind and seismic loads. The effects on serviceability (deflection and frequency) of models are studied and conclusions are deduced.
Resumo:
Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.
Resumo:
The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for corrosion detection of structures. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties for corrosion detection. The test specimens were subjected to real life corrosion experimental tests and the results confirm that the electrical resistance of the sensor electrode was dramatically changed due to corrosion.
Resumo:
This paper presents the blast response, damage mechanism and evaluation of residual load capacity of a concrete–steel composite (CSC) column using dynamic computer simulation techniques. This study is an integral part of a comprehensive research program which investigated the vulnerability of structural framing systems to catastrophic and progressive collapse under blast loading and is intended to provide design information on blast mitigation and safety evaluation of load bearing vulnerable columns that are key elements in a building. The performance of the CSC column is compared with that of a reinforced concrete (RC) column with the same dimensions and steel ratio. Results demonstrate the superior performance of the CSC column, compared to the RC column in terms of residual load carrying capacity, and its potential for use as a key element in structural systems. The procedure and results presented herein can be used in the design and safety evaluation of key elements of multi-storey buildings for mitigating the impact of blast loads.
Resumo:
In this study, experimental and numerical investigations have been conducted to explore the possibility of using A0 mode in Lamb waves to detect the position of delamination in carbon fiber reinforced plastic (CFRP) laminated beams. An experimental technique for exciting and sensing the pure A0 mode has been developed. By measuring the propagation speed of A0 mode and traveling time of a signal reflected from the delamination, its location can be identified experimentally and numerically. Moreover, the numerical analysis has been extended to gain a better understanding of the complex interaction between A0 mode and a long delamination case.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.
Resumo:
Due to the lower strength of pure copper (Cu), ceramic particulate or whisker reinforced Cu matrix composites have attracted wide interest in recent years [1–3]. These materials exhibit a combination of excellent thermal and electrical conductivities, high strength retention at elevated temperatures, and high microstructural stability [3]. The potential applications include various electrodes, electrical switches, and X-ray tube components [4].
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Resumo:
This article addresses the problem of estimating the Quality of Service (QoS) of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem impose restrictions on the topology of the orchestration models, limiting their applicability to well-structured orchestration models for example. This article lifts these restrictions by proposing a method for aggregate QoS computation that deals with more general types of unstructured orchestration models. The applicability and scalability of the proposed method are validated using a collection of models from industrial practice.
Resumo:
This paper addresses the problem of computing the aggregate QoS of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem are restricted to composite services with well-structured orchestration models. Yet, in existing languages such as WS-BPEL and BPMN, orchestration models may be unstructured. This paper lifts this limitation by providing equations to compute the aggregate QoS for general types of irreducible unstructured regions in orchestration models. In conjunction with existing algorithms for decomposing business process models into single-entry-single-exit regions, these functions allow us to cover a larger set of orchestration models than existing QoS aggregation techniques.
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.
Resumo:
Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.