237 resultados para Royal Regiment of Artillery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different magnetization in vertical graphenes fabricated by plasma-enabled chemical conversion of organic precursors with various oxygen atom contents and bonding energies was achieved. The graphenes grown from fat-like precursors exhibit magnetization up to 8 emu g−1, whereas the use of sugar-containing precursors results in much lower numbers. A relatively high Curie temperature exceeding 600 K was also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale numerical modeling of the species balance and transport in the ionized gas phase and on the nanostructured solid surface complemented by the heat exchange model is used to demonstrate the possibility of minimizing the Gibbs-Thompson effect in low-temperature, low-pressure chemically active plasma-assisted growth of uniform arrays of very thin Si nanowires, impossible otherwise. It is shown that plasma-specific effects drastically shorten and decrease the dispersion of the incubation times for the nucleation of nanowires on non-uniform Au catalyst nanoparticle arrays. The fast nucleation makes it possible to avoid a common problem of small catalyst nanoparticle burying by amorphous silicon. These results explain a multitude of experimental observations on chemically active plasma-assisted Si nanowire growth and can be used for the synthesis of a range of inorganic nanowires for environmental, biomedical, energy conversion, and optoelectronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tailoring the density of random single-walled carbon nanotube (SWCNT) networks is of paramount importance for various applications, yet it remains a major challenge due to the insufficient catalyst activation in most growth processes. Here we report on a simple and effective method to maximise the number of active catalyst nanoparticles using catalytic chemical vapor deposition (CCVD). By modulating short pulses of acetylene into a methane-based CCVD growth process, the density of SWCNTs is dramatically increased by up to three orders of magnitude without increasing the catalyst density and degrading the nanotube quality. In the framework of a vapor-liquid-solid model, we attribute the enhanced growth to the high dissociation rate of acetylene at high temperatures at the nucleation stage, which can be effective in both supersaturating the larger catalyst nanoparticles and overcoming the nanotube nucleation energy barrier of the smaller catalyst nanoparticles. These results are highly relevant to numerous applications of random SWCNT networks in next-generation energy, sensing and biomedical devices. © 2011 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility for the switch-over of the growth mode from a continuous network to unidirectional arrays of well-separated, self-organized, vertically oriented graphene nanosheets has been demonstrated using a unique, yet simple plasma-based approach. The process enables highly reproducible, catalyst-free synthesis of arrays of graphene nanosheets with reactive open graphitic edges facing upwards. Effective control over the nanosheet length, number density, and the degree of alignment along the electric field direction is achieved by a simple variation of the substrate bias. These results are of interest for environment-friendly fabrication of next-generation nanodevices based on three-dimensional, ordered self-organized nanoarrays of active nanostructures with very large surface areas and aspect ratios, highly reactive edges, and controlled density on the substrate. Our simple and versatile plasma-based approach paves the way for direct integration of such nanoarrays directly into the Si-based nanodevice platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled synthesis of both single-walled carbon nanotube and carbon nanowire networks using the same CVD reactor and Fe/Al2O3 catalyst by slightly altering the hydrogenation and temperature conditions is demonstrated. Structural, bonding and electrical characterization using SEM, TEM, Raman spectroscopy, and temperature-dependent resistivity measurements suggest that the nanotubes are of a high quality and a large fraction (well above the common 33% and possibly up to 75%) of them are metallic. On the other hand, the carbon nanowires are amorphous and semiconducting and feature a controlled sp2/sp3 ratio. The growth mechanism which is based on the catalyst nanoisland analysis by AFM and takes into account the hydrogenation and temperature control effects explains the observed switch-over of the nanostructure growth modes. These results are important to achieve the ultimate control of chirality, structure, and conductivity of one-dimensional all-carbon networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional ZnO nanostructures were successfully synthesized on single-crystal silicon substrates via a simple thermal evaporation and vapour-phase transport method under different process temperatures from 500 to 1000 °C. The detailed and in-depth analysis of the experimental results shows that the growth of ZnO nanostructures at process temperatures of 500, 800, and 1000 °C is governed by different growth mechanisms. At a low process temperature of 500 °C, the ZnO nanostructures feature flat and smooth tips, and their growth is primarily governed by the vapour-solid mechanism. At an intermediate process temperature of 800 °C, the ZnO nanostructures feature cone-shape tips, and their growth is primarily governed by the self-catalyzed and saturated vapour–liquid–solid mechanism. At a high process temperature of 1000 °C, the alloy tip appears on the front side of the ZnO nanostructures, and their growth is primarily governed by the common catalyst-assisted vapour–liquid–solid mechanism. It is also shown that the morphological, structural, optical, and compositional properties of the synthesized ZnO nanostructures are closely related to the process temperature. These results are highly relevant to the development of light-emitting diodes, chemical sensors, energy conversion devices, and other advanced applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random blinking is a major problem on the way to successful applications of semiconducting nanocrystals in optoelectronics and photonics, which until recently had neither a practical solution nor a theoretical interpretation. An experimental breakthrough has recently been made by fabricating non-blinking Cd1-xZnxSe/ZnSe graded nanocrystals [Wang et al., Nature, 2009, 459, 686]. Here, we (1) report an unequivocal and detailed theoretical investigation to understand the properties (e.g., profile) of the potential-well and the distribution of Zn content with respect to the nanocrystal radius and (2) develop a strategy to find the relationship between the photoluminescence (PL) energy peaks and the potential-well due to Zn distribution in nanocrystals. It is demonstrated that the non-square-well potential can be varied in such a way that one can indeed control the PL intensity and the energy-level difference (PL energy peaks) accurately. This implies that one can either suppress the blinking altogether, or alternatively, manipulate the PL energy peaks and intensities systematically to achieve a controlled non-random intermittent luminescence. The approach developed here is based on the ionization energy approximation and as such is generic and can be applied to any non-free-electron nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique properties of graphene and carbon nanotubes made them the most promising nanomaterials attracting enormous attention, due to the prospects for applications in various nanodevices, from nanoelectronics to sensors and energy conversion devices. Here we report on a novel deterministic, single-step approach to simultaneous production and magnetic separation of graphene flakes and carbon nanotubes in an arc discharge by splitting the high-temperature growth and low-temperature separation zones using a non-uniform magnetic field and tailor-designed catalyst alloy, and depositing nanotubes and graphene in different areas. Our results are very relevant to the development of commercially-viable, single-step production of bulk amounts of high-quality graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRAF represents one of the most frequently mutated protein kinase genes in human tumours. The mutation is commonly tested in pathology practice. BRAF mutation is seen in melanoma, papillary thyroid carcinoma (including papillary thyroid carcinoma arising from ovarian teratoma), ovarian serous tumours, colorectal carcinoma, gliomas, hepatobiliary carcinomas and hairy cell leukaemia. In these cancers, various genetic aberrations of the BRAF proto-oncogene, such as different point mutations and chromosomal rearrangements, have been reported. The most common mutation, BRAF V600E, can be detected by DNA sequencing and immunohistochemistry on formalin fixed, paraffin embedded tumour tissue. Detection of BRAF V600E mutation has the potential for clinical use as a diagnostic and prognostic marker. In addition, a great deal of research effort has been spent in strategies inhibiting its activity. Indeed, recent clinical trials involving BRAF selective inhibitors exhibited promising response rates in metastatic melanoma patients. Clinical trials are underway for other cancers. However, cutaneous side effects of treatment have been reported and therapeutic response to cancer is short-lived due to the emergence of several resistance mechanisms. In this review, we give an update on the clinical pathological relevance of BRAF mutation in cancer. It is hoped that the review will enhance the direction of future research and assist in more effective use of the knowledge of BRAF mutation in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Performance measures for Australian laboratories reporting cervical cytology are a set of quantifiable measures relating to the profile and accuracy of reporting. This study reviews aggregate data collected over the ten years in which participation in the performance measures has been mandatory. Methods Laboratories submit annual data on performance measures relating to the profile of reporting, including reporting rates for technically unsatisfactory specimens, high grade or possible high grade abnormalities and abnormal reports. Cytology-histology correlation data and review findings of negative smears reported from women with histological high grade disease are also collected. Suggested acceptable standards are set for each measure. This study reviews the aggregate data submitted by all laboratories for the years 1998-2008 and examines trends in reporting and the performance of laboratories against the suggested standards. Results The performance of Australian laboratories has shown continued improvement over the study period. There has been a fall in the proportion of laboratories with data outside the acceptable standard range in all performance measures. Laboratories are reporting a greater proportion of specimens as definite or possible high grade abnormality. This is partly attributable to an increase in the proportion of abnormal results classified as high grade or possible high grade abnormality. Despite this, the positive predictive value for high grade and possible high grade abnormalities has continued to rise. Conclusion Performance measures for cervical cytology have provided a valuable addition to external quality assurance procedures in Australia. They have documented continued improvements in the aggregate performance, as well as providing benchmarking data and goals for acceptable performance for individual laboratories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.