187 resultados para Rose, Jalen
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
We detected and mapped a dynamically spreading wave of gray matter loss in the brains of patients with Alzheimer's disease (AD). The loss pattern was visualized in four dimensions as it spread over time from temporal and limbic cortices into frontal and occipital brain regions, sparing sensorimotor cortices. The shifting deficits were asymmetric (left hemisphere > right hemisphere) and correlated with progressively declining cognitive status (p < 0.0006). Novel brain mapping methods allowed us to visualize dynamic patterns of atrophy in 52 high-resolution magnetic resonance image scans of 12 patients with AD (age 68.4 ± 1.9 years) and 14 elderly matched controls (age 71.4 ± 0.9 years) scanned longitudinally (two scans; interscan interval 2.1 ± 0.4 years). A cortical pattern matching technique encoded changes in brain shape and tissue distribution across subjects and time. Cortical atrophy occurred in a well defined sequence as the disease progressed, mirroring the sequence of neurofibrillary tangle accumulation observed in cross sections at autopsy. Advancing deficits were visualized as dynamic maps that change over time. Frontal regions, spared early in the disease, showed pervasive deficits later (< 15% loss). The maps distinguished different phases of AD and differentiated AD from normal aging. Local gray matter loss rates (5.3 ± 2.3% per year in AD v 0.9 ± 0.9% per year in controls) were faster in the left hemisphere (p < 0.029) than the right. Transient barriers to disease progression appeared at limbic/frontal boundaries. This degenerative sequence, observed in vivo as it developed, provides the first quantitative, dynamic visualization of cortical atrophic rates in normal elderly populations and in those with dementia.
Resumo:
We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 ± 1.9 years) and 14 matched controls (age: 71.4 ± 0.9 years), each scanned twice (2.1 ± 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials.
Resumo:
We recently noticed an error in the demographic data in this article. The validity of the findings and the conclusions of the paper is not affected. However, there is an error in the reported sample size and in the means and standard deviations of the subjects’ ages and MMSE scores. We would like to correct this error, which came to light when we were re-analyzing the data for a meta-analysis. The error occurred because an older version of a spreadsheet was incorrectly used when reporting the sample composition. Instead of examining 12 Alzheimer's disease patients and 14 healthy elderly controls, we in fact examined 17 Alzheimer’s disease patients and 14 healthy elderly controls. All maps and morphometric data reported in the paper are correct, except that the sample size was in fact slightly higher than that originally reported, and the maps computed in the paper were based on the larger sample (which included five more subjects in the Alzheimer’s disease group). All of the maps and figures in the paper are correct, and the conclusions of the paper are unchanged. We apologize for this error, which falls under the sole responsibility of the first author. The corrected demographic information appears below.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood- and adult-onset schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages.
Resumo:
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
Resumo:
We present global and regional rates of brain atrophy measured on serially acquired Tl-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups. However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD.
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.
Resumo:
While there is clear recognition of the need to incorporate sustainable development into university curricula, there is limited research that examines how to achieve that integration or evaluates its impacts on student learning. This paper responds to these knowledge gaps through a case study of curriculum renewal that involved embedding sustainability into a first year engineering curriculum. The initiative was guided by a deliberative and dynamic model for curriculum renewal that brought together internal and external stakeholders through a structured sequence of facilitated workshops and meetings. That process identified sustainability-related knowledge and skills relevant for first year engineering, and faculty members teaching in the first year program were guided through a process of curriculum renewal to meet those needs. The process through which the whole of curriculum renewal was undertaken is innovative and provides a case study of precedent in the field of education for sustainability. The study demonstrates the contribution that can be made by a web-based sustainability portal in supporting curriculum renewal. Learning and teaching outcomes were evaluated through ‘before and after surveys’ of the first year engineering students. Statistically significant increases in student's self-reported knowledge of sustainability were measured as a result of exposure to the renewed first year curriculum and this confirmed the value of the initiative in terms of enhancing student learning. While applied in this case to engineering, the process to achieve integration of sustainability into the curriculum approach is likely to have value for other academic disciplines. Considering student performance on assignments and exam questions relating to sustainability would provide a stronger basis for future research to understand the impact of initiatives like this on student learning.
Resumo:
How can obstacles to innovation be overcome in road construction? Using a focus group methodology, and based on two prior rounds of empirical work, the analysis in this chapter generates a set of four key solutions to two main construction innovation obstacles: (1) restrictive tender assessment and (2) disagreement over who carries the risk of new product failure. The four key solutions uncovered were: 1) pre-project product certification; 2) past innovation performance assessment; 3) earlier involvement of product suppliers and road asset operators; and 4) performance-based specifications. Additional research is suggested in order to illicit deeper insights into possible solutions to construction innovation obstacles, and should emphasise furthering the theoretical interpretation of empirical phenomena.
Resumo:
Previous research into young people’s drinking behaviour has studied how social practices influence their actions and how they negotiate drinking-related identities. Here, adopting the perspective of discursive psychology we examine how, for young people, social influences are bound up with issues of drinking and of identity. We conducted 19 focus groups with undergraduate students in Australia aged between 18 and 24 years. Thematic analysis of participants’ accounts for why they drink or do not drink was used to identify passages of talk that referred to social influence, paying particular attention to terms such as ‘pressure’ and ‘choice’. These passages were then analysed in fine-grained detail, using discourse analysis, to study how participants accounted for social influence. Participants treated their behaviour as accountable and produced three forms of account that: (1) minimised the choice available to them, (2) explained drinking as culture and (3) described resisting peer pressure. They also negotiated gendered social dynamics related to drinking. These forms of account allowed the participants to avoid individual responsibility for drinking or not drinking. These findings demonstrate that the effects of social influence on young people’s drinking behaviour cannot be assumed, as social influence itself becomes negotiable within local contexts of talk about drinking.
Resumo:
Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of 18F-FDOPA to identify infiltrative tumour and 18F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating 18F-FMISO from a single frame prior to injection of 18F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of 18F-FMISO and 18F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.
Resumo:
In this paper we report the findings from an evaluation of the introduction of sensory modulation (SM) in an acute mental health inpatient unit. It was expected that SM could be used to help settle patients experiencing high levels of disturbance and that as a result, there would be less need for use of more restrictive seclusion practices. The evaluation took place in a hospital in south-east Queensland, Australia. SM was introduced in one acute unit while the other served as a control. The evaluation comprised two studies. In the first study we aimed to determine whether SM reduced the level of disturbance among patients given the opportunity to use it. In the second study we aimed to find out whether the introduction of SM reduced the frequency and duration of seclusion. In study 1, we found that most patients reported marked reduction in disturbance after using SM and there was a very large effect size for the group as a whole. In study 2, we found that frequency of seclusion dropped dramatically in the unit that introduced SM but rose slightly in the unit that did not have access to SM. The change in seclusion rate was highly significant (χ2 = 49.1, df = 1, p < 0.001). Results are discussed, having reference to the limitations inherent in a naturalistic study.