190 resultados para Residual-Based Cointegration Test
Resumo:
Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques.
Resumo:
It is well understood that that there is variation inherent in all testing techniques, and that all soil and rock materials also contain some degree of natural variability. Less consideration is normally given to variation associated with natural material heterogeneity within a site, or the relative condition of the material at the time of testing. This paper assesses the impact of spatial and temporal variability upon repeated insitu testing of a residual soil and rock profile present within a single residential site over a full calendar year, and thus range of seasonal conditions. From this repeated testing, the magnitude of spatial and temporal variation due to seasonal conditions has demonstrated that, depending on the selected location and moisture content of the subsurface at the time of testing, up to a 35% variation within the test results can be expected. The results have also demonstrated that the completed insitu test technique has a similarly large measurement and inherent variability error and, for the investigated site, up to a 60% variation in normalised results was observed. From these results, it is recommended that the frequency and timing of insitu tests should be considered when deriving geotechnical design parameters from a limited data set.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.
Resumo:
Particle Swarm Optimization (PSO) is a biologically inspired computational search and optimization method based on the social behaviors of birds flocking or fish schooling. Although, PSO is represented in solving many well-known numerical test problems, but it suffers from the premature convergence. A number of basic variations have been developed due to solve the premature convergence problem and improve quality of solution founded by the PSO. This study presents a comprehensive survey of the various PSO-based algorithms. As part of this survey, the authors have included a classification of the approaches and they have identify the main features of each proposal. In the last part of the study, some of the topics within this field that are considered as promising areas of future research are listed.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
Background The diagnosis of frailty is based on physical impairments and clinicians have indicated that early detection is one of the most effective methods for reducing the severity of physical frailty. Maybe, an alternative to the classical diagnosis could be the instrumentalization of classical functional testing, as Romberg test or Timed Get Up and Go Test. The aim of this study was (I) to measure and describe the magnitude of accelerometry values in the Romberg test in two groups of frail and non-frail elderly people through instrumentation with the iPhone 4®, (II) to analyse the performances and differences between the study groups, and (III) to analyse the performances and differences within study groups to characterise accelerometer responses to increasingly difficult challenges to balance. Methods This is a cross-sectional study of 18 subjects over 70 years old, 9 frail subjects and 9 non-frail subjects. The non-parametric Mann–Whitney U test was used for between-group comparisons in means values derived from different tasks. The Wilcoxon Signed-Rank test was used to analyse differences between different variants of the test in both independent study groups. Results The highest difference between groups was found in the accelerometer values with eyes closed and feet parallel: maximum peak acceleration in the lateral axis (p < 0.01), minimum peak acceleration in the lateral axis (p < 0.01) and minimum peak acceleration from the resultant vector (p < 0.01). Subjects with eyes open and feet parallel, greatest differences found between the groups were in the maximum peak acceleration in the lateral axis (p < 0.01), minimum peak acceleration in the lateral axis (p < 0.01) and minimum peak acceleration from the resultant vector (p < 0.001). With eyes closed and feet in tandem, the greatest differences found between the groups were in the minimum peak acceleration in the lateral axis (p < 0.01). Conclusions The accelerometer fitted in the iPhone 4® is able to study and analyse the kinematics of the Romberg test between frail and non-frail elderly people. In addition, the results indicate that the accelerometry values also were significantly different between the frail and non-frail groups, and that values from the accelerometer accelerometer increased as the test was made more complicated.
Resumo:
Background People with intellectual disabilities (ID) have lower levels of physical activity and quality of life and they have a lot of barriers to face when taking part in physical activity. Other problems are the poor adherence to physical activity such people have so this study is designed to improve adherence to physical activity for people with intellectual disabilities with the assistance of an application for smartphones. The aim of the study will be to improve physical activity and physical condition after multimodal intervention and to analyse the promotion of adherence to physical activity through a multimodal intervention and an app intervention (mHealth) in people with ID. Methods A two-stage study will be conducted. In stage 1 a multimodal intervention will take place will be done with physical activity and educational advice over eight weeks, two days a week. Data will be measured after and before the intervention. In stage 2 a randomized controlled trial will be conducted. In the intervention group we will install an application to a smartphone; this application will be a reminder to do a physical activity and they have to select whether they have or haven’t done a physical activity every day. This application will be installed for 18 weeks. Data will be measured after and before the application is installed in two groups. We will measure results 10 weeks later when the two groups don’t have the reminder. The principal outcome used to measure the adherence to physical activity will be the International Physical Activity Questionnaire; secondary outcomes will be a fun-fitness test and self-report survey about quality of life, self-efficacy and social support. Samples will be randomized by sealed envelope in two groups, with approximately 20 subjects in each group. It’s important to know that the therapist will be blinded and won’t know the subjects of each group. Discussion Offering people with ID a multimodal intervention and tool to increase the adherence to a physical activity may increase the levels of physical activity and quality of life. Such a scheme, if beneficial, could be implemented successfully within public health sense. Trial registration ClinicalTrials.gov Identifier: NCT01915381.
Resumo:
Meta-analyses estimate a statistical effect size for a test or an analysis by combining results from multiple studies without necessarily having access to each individual study's raw data. Multi-site meta-analysis is crucial for imaging genetics, as single sites rarely have a sample size large enough to pick up effects of single genetic variants associated with brain measures. However, if raw data can be shared, combining data in a "mega-analysis" is thought to improve power and precision in estimating global effects. As part of an ENIGMA-DTI investigation, we use fractional anisotropy (FA) maps from 5 studies (total N=2, 203 subjects, aged 9-85) to estimate heritability. We combine the studies through meta-and mega-analyses as well as a mixture of the two - combining some cohorts with mega-analysis and meta-analyzing the results with those of the remaining sites. A combination of mega-and meta-approaches may boost power compared to meta-analysis alone.
Resumo:
Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.
Resumo:
An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.
Resumo:
Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application – that will allow performance of the proposed test using a software with graphical user interface – has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/).
Resumo:
Rationale: Asthma has substantial morbidity and mortality and a strong genetic component, but identification of genetic risk factors is limited by availability of suitable studies. Objectives: To test if population-based cohorts with self-reported physician-diagnosed asthma and genome-wide association (GWA) data could be used to validate known associations with asthma and identify novel associations. Methods: The APCAT (Analysis in Population-based Cohorts of Asthma Traits) consortium consists of 1,716 individuals with asthma and 16,888 healthy controls from six European-descent population-based cohorts. We examined associations in APCAT of thirteen variants previously reported as genome-wide significant (P<5x10-8) and three variants reported as suggestive (P<5×10-7). We also searched for novel associations in APCAT (Stage 1) and followed-up the most promising variants in 4,035 asthmatics and 11,251 healthy controls (Stage 2). Finally, we conducted the first genome-wide screen for interactions with smoking or hay fever. Main Results: We observed association in the same direction for all thirteen previously reported variants and nominally replicated ten of them. One variant that was previously suggestive, rs11071559 in RORA, now reaches genome-wide significance when combined with our data (P = 2.4×10-9). We also identified two genome-wide significant associations: rs13408661 near IL1RL1/IL18R1 (PStage1+Stage2 = 1.1x10-9), which is correlated with a variant recently shown to be associated with asthma (rs3771180), and rs9268516 in the HLA region (PStage1+Stage2 = 1.1x10-8), which appears to be independent of previously reported associations in this locus. Finally, we found no strong evidence for gene-environment interactions with smoking or hay fever status. Conclusions: Population-based cohorts with simple asthma phenotypes represent a valuable and largely untapped resource for genetic studies of asthma. © 2012 Ramasamy et al.