186 resultados para Protective adherent iron rich tribolayers
Resumo:
Driver cognitions about aggressive driving of others are potentially important to the development of evidence-based interventions. Previous research has suggested that perceptions that other drivers are intentionally aggressive may influence recipient driver anger and subsequent aggressive responses. Accordingly, recent research on aggressive driving has attempted to distinguish between intentional and unintentional motives in relation to problem driving behaviours. This study assessed driver cognitive responses to common potentially provocative hypothetical driving scenarios to explore the role of attributions in driver aggression. A convenience sample of 315 general drivers 16–64 yrs (M = 34) completed a survey measuring trait aggression (Aggression Questionnaire AQ), driving anger (Driving Anger Scale, DAS), and a proxy measure of aggressive driving behaviour (Australian Propensity for Angry Driving AusPADS). Purpose designed items asked for drivers’ ‘most likely’ thought in response to AusPADS scenarios. Response options were equivalent to causal attributions about the other driver. Patterns in endorsements of attribution responses to the scenarios suggested that drivers tended to adopt a particular perception of the driving of others regardless of the depicted circumstances: a driving attributional style. No gender or age differences were found for attributional style. Significant differences were detected between attributional styles for driving anger and endorsement of aggressive responses to driving situations. Drivers who attributed the on-road event to the other being an incompetent or dangerous driver had significantly higher driving anger scores and endorsed significantly more aggressive driving responses than those drivers who attributed other driver’s behaviour to mistakes. In contrast, drivers who gave others the ‘benefit of the doubt’ endorsed significantly less aggressive driving responses than either of these other two groups, suggesting that this style is protective.
Resumo:
The control of environmental factors in open-office environments, such as lighting and temperature is becoming increasingly automated. This development means that office inhabitants are losing the ability to manually adjust environmental conditions according to their needs. In this paper we describe the design, use and evaluation of MiniOrb, a system that employs ambient and tangible interaction mechanisms to allow inhabitants of office environments to maintain awareness of environmental factors, report on their own subjectively perceived office comfort levels and see how these compare to group average preferences. The system is complemented by a mobile application, which enables users to see and set the same sensor values and preferences, but using a screen-based interface. We give an account of the system’s design and outline the results of an in-situ trial and user study. Our results show that devices that combine ambient and tangible interaction approaches are well suited to the task of recording indoor climate preferences and afford a rich set of possible interactions that can complement those enabled by more conventional screen-based interfaces.
Resumo:
The consequences of falls are often dreadful for individuals with lower limb amputation using bone-anchored prosthesis.[1-5] Typically, the impact on the fixation is responsible for bending the intercutaneous piece that could lead to a complete breakage over time. .[3, 5-8] The surgical replacement of this piece is possible but complex and expensive. Clearly, there is a need for solid data enabling an evidence-based design of protective devices limiting impact forces and torsion applied during a fall. The impact on the fixation during an actual fall is obviously difficult to record during a scientific experiment.[6, 8-13] Consequently, Schwartze and colleagues opted for one of the next best options science has to offer: simulation with an able-bodied participant. They recorded body movements and knee impacts on the floor while mimicking several plausible falling scenarios. Then, they calculated the forces and moments that would be applied at four levels along the femur corresponding to amputation heights.[6, 8-11, 14-25] The overall forces applied during the falls were similar regardless of the amputation height indicating that the impact forces were simply translated along the femur. As expected, they showed that overall moments generally increased with amputation height due to changes in lever arm. This work demonstrates that devices preventing only against force overload do not require considering amputation height while those protecting against bending moments should. Another significant contribution is to provide, for the time, the magnitude of the impact load during different falls. This loading range is crucial to the overall design and, more precisely, the triggering threshold of protective devices. Unfortunately, the analysis of only a single able-bodied participant replicating falls limits greatly the generalisation of the findings. Nonetheless, this case study is an important milestone contributing to a better understanding of load impact during a fall. This new knowledge will improve the treatment, the safe ambulation and, ultimately, the quality of life of individuals fitted with bone-anchored prosthesis.
Resumo:
The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
OBJECTIVES To estimate the extent of iron deficiency anaemia (IDA) among children aged 0 - 4 years and pregnant women aged 15 - 49 years, and the burden of disease attributed to IDA in South Africa in 2000. DESIGN The comparative risk assessment (CRA) methodology of the World Health Organization (WHO) was followed using local prevalence and burden estimates. IDA prevalence came from re-analysis of the South African Vitamin A Consultative Group study in the case of the children, and from a pooled estimate from several studies in the case of the pregnant women (haemoglobin level < 11 g/dl and ferritin level < 12 microg/l). Monte Carlo simulation-modelling was used for the uncertainty analysis. SETTING South Africa. SUBJECTS Children under 5 years and pregnant women 15 - 49 years. OUTCOME MEASURES Direct sequelae of IDA, maternal and perinatal deaths and disability-adjusted life years (DALYs) from mild mental disability related to IDA. Results. It is estimated that 5.1% of children and 9 - 12% of pregnant women had IDA and that about 7.3% of perinatal deaths and 4.9% of maternal deaths were attributed to IDA in 2000. Overall, about 174,976 (95% uncertainty interval 150,344 - 203,961) healthy years of life lost (YLLs), or between 0.9% and 1.3% of all DALYs in South Africa in 2000, were attributable to IDA. CONCLUSIONS This first study in South Africa to quantify the burden from IDA suggests that it is a less serious public health problem in South Africa than in many other developing countries. Nevertheless, this burden is preventable, and the study highlights the need to disseminate the food-based dietary guidelines formulated by the National Department of Health to people who need them and to monitor the impact of the food fortification programme.
Resumo:
Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10−8) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease.
Resumo:
Iron species are one of the least toxic and least expensive substances that are photocatalytic in the visible region of the spectrum. Therefore, this article focuses on iron-based photocatalysts sensitive to visible light. Photo-Fenton reactions are considered with respect to those assisted by and involve the in situ production of H2O2. The possible role that photoactive iron species play by interacting with natural organic matter in water purification in the natural environment is considered. The review also considered photosensitization by phthalocyanines and the potential role that layered double hydroxides may have not only as catalyst supports but also as photosensitizers themselves. Finally, photocatalytic disinfection of water is discussed, and the desirability of standardized metrics and experimental conditions to assist in the comparative evaluation of photocatalysts is highlighted.
Resumo:
Recent 'Global Burden of Disease' studies have provided quantitative evidence of the significant role air pollution plays as a human health risk factor (Lim et al., The Lancet, 380: 2224–2260, 2012). Tobacco smoke, including second hand smoke, household air pollution from solid fuels and ambient particulate matter are among the top risks, leading to lower life expectancy around the world. Indoor air constitutes an environment particularly rich in different types of pollutants, originating from indoor sources, as well as penetrating from outdoors, mixing, interacting or growing (when considering microbes) under the protective enclosure of the building envelope. Therefore, it is not a simple task to follow the dynamics of the processes occurring there, or to quantify the outcomes of the processes in terms of pollutant concentrations and other characteristics. This is further complicated by limitations such as building access for the purpose of air quality monitoring, or the instrumentation which can be used indoors, because of their possible interference with the occupants comfort (due to their large size, noise generated or amount of air drawn). European studies apportioned contributions of indoor versus outdoor sources of indoor air contaminants in 26 European countries and quantified IAQ associated DALYs (Disability-Adjusted Life Years) in those countries (Jantunen et al., Promoting actions for healthy indoor air (IAIAQ), European Commission Directorate General for Health and Consumers, Luxembourg, 2011). At the same time, there has been an increase in research efforts around the world to better understand the sources, composition, dynamics and impacts of indoor air pollution. Particular focus has been directed towards the contemporary sources, novel pollutants and new detection methods. The importance of exposure assessment and personal exposure, the majority of which occurs in various indoor micro¬environments, has also been realized. Overall, this emerging knowledge has been providing input for global assessments of indoor environments, the impact of indoor pollutants and their science based management and control. It was a major outcome of recent international conferences that interdisciplinarity and especially a better colla¬boration between exposure and indoor sciences would be of high benefit for the health related evaluation of environmental stress factors and pollutants. A very good example is the combination of biomonitoring and indoor air, particle and dust analysis to study the exposure routes of semi volatile organic compounds (SVOCs). We have adopted the idea of combining the forces of exposure and indoor sciences for this Special Issue, identified new and challenging topics and have attracted colleagues who are top researchers in their field to provide their inputs. The Special Issue includes papers, which collectively present advances in current research topics and in our view, build the bridge between indoor and exposure sciences.
Resumo:
Field monitoring is an important means for understanding soil behaviour and its interaction with buried structures such as pipeline. This paper details the successful instrumentation of a section of an in-service cast iron water main buried in an area of reactive clay where frequent water pipe breakage has been observed. The instrumentation included measurement of pipe strain; pipe water pressure and temperature; soil pressure, temperature, moisture content and matric suction, as well as the meteorological conditions on site. The data generally indicated that changes in soil temperature, suction and moisture content were directly related to the local climatic variations. The suction and moisture content data indicated that the soil profile at the site down to around 700 mm, and probably down to 1000 mm, is affected by changes in surface weather, while soil conditions below this depth appear to be more stable. Analysis of pipe strain indicated that the pipe behaves like a cantilever beam, with the top experiencing predominantly tensile strains during summer. Subsequently, these trends reduce to compressive strains as soil swelling occurs due to increase of moisture content with the onset of winter.
Resumo:
EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies.
Resumo:
The paper presents data on petrology, bulk rock and mineral compositions, and textural classification of the Middle Jurassic Jericho kimberlite (Slave craton, Canada). The kimberlite was emplaced as three steep-sided pipes in granite that was overlain by limestones and minor soft sediments. The pipes are infilled with hypabyssal and pyroclastic kimberlites and connected to a satellite pipe by a dyke. The Jericho kimberlite is classified as a Group Ia, lacking groundmass tetraferriphlogopite and containing monticellite pseudomorphs. The kimberlite formed, during several consecutive emplacement events of compositionally different batches of kimberlite magma. Core-logging and thin-section observations identified at least two phases of hypabyssal kimberlites and three phases of pyroclastic kimberlites. Hypabyssal kimberlites intruded as a main dyke (HK1) and as late small-volume aphanitic and vesicular dykes. Massive pyroclastic kimberlite (MPK1) predominantly filled the northern and southern lobes of the pipe and formed from magma different from the HK1 magma. The MPK1 magma crystallized Ti-, Fe-, and Cr-rich phlogopite without rims of barian phlogopite, and clinopyroxene and spinel without atoll structures. MPK1 textures, superficially reminiscent of tuffisitic kimberlite, are caused by pervasive contamination by granite xenoliths. The next explosive events filled the central lobe with two varieties of pyroclastic kimberlite: (1) massive and (2) weakly bedded, normally graded pyroclastic kimberlite. The geology of the Jericho pipe differs from the geology of South African or the Prairie kimberlites, but may resemble Lac de Gras pipes, in which deeper erosion removed upper fades of resedimented kimberlites.
Resumo:
The 'rich club' coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development.
Resumo:
Supply chain outsourcing has posed problems for conventional labour regulation, which focuses on employers contracting directly with workers, particularly employees. These difficulties have been exacerbated by the traditional trifurcated approach to regulation of pay and conditions, work health and safety and workers’ compensation. This paper analyses the parallel interaction of two legal developments within the Australian textile, clothing and footwear industry. The first is mandatory contractual tracking mechanisms within state and federal labour laws and the second is the duties imposed by the harmonised Work Health and Safety Acts. Their combined effect has created an innovative, fully enforceable and integrated regulatory framework for the textile, clothing and footwear industry and, it is argued, other supply chains in different industry contexts. This paper highlights how regulatory solutions can address adverse issues for workers at the bottom of contractual networks, such as fissured workplaces and capital fragmentation, by enabling regulators to harness the commercial power of business controllers at the apex to ensure compliance throughout the entire chain.
The relative importance of luninal and systemic signals in the control of intestinal iron absorption