304 resultados para Prediction os mortality
Resumo:
The recent expansion of prediction markets provides a great opportunity to test the market efficiency hypothesis and the calibration of trader judgements. Using a large database of observed prices, this article studies the calibration of prediction markets prices on sporting events using both nonparametric and parametric methods. While only minor bias can be observed during most of the lifetime of the contracts, the calibration of prices deteriorates very significantly in the last moments of the contracts’ lives. Traders tend to overestimate the probability of the losing team to reverse the situation in the last minutes of the game.
Resumo:
Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.
Resumo:
Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.
Resumo:
We examined the variation in association between high temperatures and elderly mortality (age ≥ 75 years) from year to year in 83 US cities between 1987 and 2000. We used a Poisson regression model and decomposed the mortality risk for high temperatures into: a “main effect” due to high temperatures using lagged non-linear function, and an “added effect” due to consecutive high temperature days. We pooled yearly effects across both regional and national levels. The high temperature effects (both main and added effects) on elderly mortality varied greatly from year to year. In every city there was at least one year where higher temperatures were associated with lower mortality. Years with relatively high heat-related mortality were often followed by years with relatively low mortality. These year to year changes have important consequences for heat-warning systems and for predictions of heat-related mortality due to climate change.
Resumo:
An advanced rule-based Transit Signal Priority (TSP) control method is presented in this paper. An on-line transit travel time prediction model is the key component of the proposed method, which enables the selection of the most appropriate TSP plans for the prevailing traffic and transit condition. The new method also adopts a priority plan re-development feature that enables modifying or even switching the already implemented priority plan to accommodate changes in the traffic conditions. The proposed method utilizes conventional green extension and red truncation strategies and also two new strategies including green truncation and queue clearance. The new method is evaluated against a typical active TSP strategy and also the base case scenario assuming no TSP control in microsimulation. The evaluation results indicate that the proposed method can produce significant benefits in reducing the bus delay time and improving the service regularity with negligible adverse impacts on the non-transit street traffic.
Resumo:
Background & aims The Australasian Nutrition Care Day Survey (ANCDS) ascertained if malnutrition and poor food intake are independent risk factors for health-related outcomes in Australian and New Zealand hospital patients. Methods Phase 1 recorded nutritional status (Subjective Global Assessment) and 24-h food intake (0, 25, 50, 75, 100% intake). Outcomes data (Phase 2) were collected 90-days post-Phase 1 and included length of hospital stay (LOS), readmissions and in-hospital mortality. Results Of 3122 participants (47% females, 65 ± 18 years) from 56 hospitals, 32% were malnourished and 23% consumed ≤ 25% of the offered food. Malnourished patients had greater median LOS (15 days vs. 10 days, p < 0.0001) and readmissions rates (36% vs. 30%, p = 0.001). Median LOS for patients consuming ≤ 25% of the food was higher than those consuming ≤ 50% (13 vs. 11 days, p < 0.0001). The odds of 90-day in-hospital mortality were twice greater for malnourished patients (CI: 1.09–3.34, p = 0.023) and those consuming ≤ 25% of the offered food (CI: 1.13–3.51, p = 0.017), respectively. Conclusion The ANCDS establishes that malnutrition and poor food intake are independently associated with in-hospital mortality in the Australian and New Zealand acute care setting.
Resumo:
Rationale: The Australasian Nutrition Care Day Survey (ANCDS) evaluated if malnutrition and decreased food intake are independent risk factors for negative outcomes in hospitalised patients. Methods: A multicentre (56 hospitals) cross-sectional survey was conducted in two phases. Phase 1 evaluated nutritional status (defined by Subjective Global Assessment) and 24-hour food intake recorded as 0, 25, 50, 75, and 100% intake. Phase 2 data, which included length of stay (LOS), readmissions and mortality, were collected 90 days post-Phase 1. Logistic regression was used to control for confounders: age, gender, disease type and severity (using Patient Clinical Complexity Level scores). Results: Of 3122 participants (53% males, mean age: 65±18 years) 32% were malnourished and 23% consumed�25% of the offered food. Median LOS for malnourished (MN) patients was higher than well-nourished (WN) patients (15 vs. 10 days, p<0.0001). Median LOS for patients consuming �25% of the food was higher than those consuming �50% (13 vs. 11 days, p<0.0001). MN patients had higher readmission rates (36% vs. 30%, p = 0.001). The odds ratios of 90-day in-hospital mortality were 1.8 times greater for MN patients (CI: 1.03 3.22, p = 0.04) and 2.7 times greater for those consuming �25% of the offered food (CI: 1.54 4.68, p = 0.001). Conclusion: The ANCDS demonstrates that malnutrition and/or decreased food intake are associated with longer LOS and readmissions. The survey also establishes that malnutrition and decreased food intake are independent risk factors for in-hospital mortality in acute care patients; and highlights the need for appropriate nutritional screening and support during hospitalisation. Disclosure of Interest: None Declared.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
Background The mechanisms underlying socioeconomic inequalities in mortality from cardiovascular diseases (CVD) are largely unknown. We studied the contribution of childhood socioeconomic conditions and adulthood risk factors to inequalities in CVD mortality in adulthood. Methods The prospective GLOBE study was carried out in the Netherlands, with baseline data from 1991, and linked with the cause of death register in 2007. At baseline, participants reported on adulthood socioeconomic position (SEP) (own educational level), childhood socioeconomic conditions (occupational level of respondent’s father), and a broad range of adulthood risk factors (health behaviours, material circumstances, psychosocial factors). This present study is based on 5,395 men and 6,306 women, and the data were analysed using Cox regression models and hazard ratios (HR). Results A low adulthood SEP was associated with increased CVD mortality for men (HR 1.84; 95% CI: 1.41-2.39) and women (HR 1.80; 95%CI: 1.04-3.10). Those with poorer childhood socioeconomic conditions were more likely to die from CVD in adulthood, but this reached statistical significance only among men with the poorest childhood socioeconomic circumstances. About half of the investigated adulthood risk factors showed significant associations with CVD mortality among both men and women, namely renting a house, experiencing financial problems, smoking, physical activity and marital status. Alcohol consumption and BMI showed a U-shaped relationship with CVD mortality among women, with the risk being significantly greater for both abstainers and heavy drinkers, and among women who were underweight or obese. Among men, being single or divorced and using sleep/anxiety drugs increased the risk of CVD mortality. In explanatory models, the largest contributor to adulthood CVD inequalities were material conditions for men (42%; 95% CI: −73 to −20) and behavioural factors for women (55%; 95% CI: -191 to −28). Simultaneous adjustment for adulthood risk factors and childhood socioeconomic conditions attenuated the HR for the lowest adulthood SEP to 1.34 (95% CI: 0.99-1.82) for men and 1.19 (95% CI: 0.65-2.15) for women. Conclusions Adulthood material, behavioural and psychosocial factors played a major role in the explanation of adulthood SEP inequalities in CVD mortality. Childhood socioeconomic circumstances made a modest contribution, mainly via their association with adulthood risk factors. Policies and interventions to reduce health inequalities are likely to be most effective when considering the influence of socioeconomic circumstances across the entire life course and in particular, poor material conditions and unhealthy behaviours in adulthood.
Resumo:
BACKGROUND: Studies have shown that nurse staffing levels, among many other factors in the hospital setting, contribute to adverse patient outcomes. Concerns about patient safety and quality of care have resulted in numerous studies being conducted to examine the relationship between nurse staffing levels and the incidence of adverse patient events in both general wards and intensive care units. AIM: The aim of this paper is to review literature published in the previous 10 years which examines the relationship between nurse staffing levels and the incidence of mortality and morbidity in adult intensive care unit patients. METHODS: A literature search from 2002 to 2011 using the MEDLINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, and Australian digital thesis databases was undertaken. The keywords used were: intensive care; critical care; staffing; nurse staffing; understaffing; nurse-patient ratios; adverse outcomes; mortality; ventilator-associated pneumonia; ventilator-acquired pneumonia; infection; length of stay; pressure ulcer/injury; unplanned extubation; medication error; readmission; myocardial infarction; and renal failure. A total of 19 articles were included in the review. Outcomes of interest are patient mortality and morbidity, particularly infection and pressure ulcers. RESULTS: Most of the studies were observational in nature with variables obtained retrospectively from large hospital databases. Nurse staffing measures and patient outcomes varied widely across the studies. While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies concluded that a trend exists between increased nurse staffing levels and decreased adverse events. CONCLUSION: While an overall statistical association between increased nurse staffing levels and decreased adverse patient outcomes was not found in this review, most studies demonstrated a trend between increased nurse staffing levels and decreased adverse patient outcomes in the intensive care unit which is consistent with previous literature. While further more robust research methodologies need to be tested in order to more confidently demonstrate this association and decrease the influence of the many other confounders to patient outcomes; this would be difficult to achieve in this field of research.
Resumo:
Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.