190 resultados para Power Reactor Development Co.
Resumo:
Self-development resources are a popular billion -dollar industry worldwide used to improve individuals quality of lives. However, there are insufficient studies for a contemporary conceptualization, especially when it comes to live self-development programs. This paper provides a literature review about current self-development definitions, ideology, concepts, and themes; quality of material provided; quality and characteristics of self-development providers; and the features of the participants who seek such programs. The paper will also discuss the relationsh ip between self-development and related disciplines including coaching, training, mentoring, and motivational speaking. Finally, a new definition will be proposed for self-development coaching programs. Gaps of knowledge are highlighted for further research.
Resumo:
What is ‘best practice’ when it comes to managing intellectual property rights in participatory media content? As commercial media and entertainment business models have increasingly come to rely upon the networked productivity of end-users (Banks and Humphreys 2008) this question has been framed as a problem of creative labour made all the more precarious by changing employment patterns and work cultures of knowledge-intensive societies and globalising economies (Banks, Gill and Taylor 2014). This paper considers how the problems of ownership are addressed in non-commercial, community-based arts and media contexts. Problems of labour are also manifest in these contexts (for example, reliance on volunteer labour and uncertain economic reward for creative excellence). Nonetheless, managing intellectual property rights in collaborative creative works that are created in community media and arts contexts is no less challenging or complex than in commercial contexts. This paper takes as its focus a particular participatory media practice known as ‘digital storytelling’. The digital storytelling method, formalised by the Centre for Digital Storytelling (CDS) from the mid-1990s, has been internationally adopted and adapted for use in an open-ended variety of community arts, education, health and allied services settings (Hartley and McWilliam 2009; Lambert 2013; Lundby 2008; Thumin 2012). It provides a useful point of departure for thinking about a range of collaborative media production practices that seek to address participation ‘gaps’ (Jenkins 2006). However the outputs of these activities, including digital stories, cannot be fully understood or accurately described as user-generated content. For this reason, digital storytelling is taken here to belong to a category of participatory media activity that has been described as ‘co-creative’ media (Spurgeon 2013) in order to improve understanding of the conditions of mediated and mediatized participation (Couldry 2008). This paper reports on a survey of the actual copyrighting practices of cultural institutions and community-based media arts practitioners that work with digital storytelling and similar participatory content creation methods. This survey finds that although there is a preference for Creative Commons licensing a great variety of approaches are taken to managing intellectual property rights in co-creative media. These range from the use of Creative Commons licences (for example, Lambert 2013, p.193) to retention of full copyrights by storytellers, to retention of certain rights by facilitating organisations (for example, broadcast rights by community radio stations and public service broadcasters), and a range of other shared rights arrangements between professional creative practitioners, the individual storytellers and communities with which they collaborate, media outlets, exhibitors and funders. This paper also considers how aesthetic and ethical considerations shape responses to questions of intellectual property rights in community media arts contexts. For example, embedded in the CDS digital storytelling method is ‘a critique of power and the numerous ways that rank is unconsciously expressed in engagements between classes, races and gender’ (Lambert 117). The CDS method privileges the interests of the storyteller and, through a transformative workshop process, aims to generate original individual stories that, in turn, reflect self-awareness of ‘how much the way we live is scripted by history, by social and cultural norms, by our own unique journey through a contradictory, and at times hostile, world’ (Lambert 118). Such a critical approach is characteristic of co-creative media practices. It extends to a heightened awareness of the risks of ‘story theft’ and the challenges of ownership and informs ideas of ‘best practice’ amongst creative practitioners, teaching artists and community media producers, along with commitments to achieving equitable solutions for all participants in co-creative media practice (for example, Lyons-Reid and Kuddell nd.). Yet, there is surprisingly little written about the challenges of managing intellectual property produced in co-creative media activities. A dialogic sense of ownership in stories has been identified as an indicator of successful digital storytelling practice (Hayes and Matusov 2005) and is helpful to grounding the more abstract claims of empowerment for social participation that are associated with co-creative methods. Contrary to the ‘change from below’ philosophy that underpins much thinking about co-creative media, however, discussions of intellectual property usually focus on how methods such as digital storytelling contribute to the formation of copyright law-compliant subjects, particularly when used in educational settings (for example, Ohler nd.). This also exposes the reliance of co-creative methods on the creative assets storytellers (rather than on the copyrighted materials of the media cultures of storytellers) as a pragmatic response to the constraints that intellectual property right laws impose on the entire category of participatory media. At the level of practical politics, it also becomes apparent that co-creative media practitioners and storytellers located in copyright jurisdictions governed by ‘fair use’ principles have much greater creative flexibility than those located in jurisdictions governed by ‘fair dealing’ principles.
Resumo:
Missoni is a luxury Italian knitwear brand that partnered with Target in September 2011 releasing a large, one off, mass-market collection that ranged from apparel to home wares. The collaboration received extensive media coverage and was consequently extremely sought after. The online sales site crashed within hours of opening while shelves were cleared in stores minutes after trading began. Within hours more than 40000 items from the collection were posted for sale online at greatly inflated prices. Evaluation of the case study revealed that sales of the Missoni collection increased following the collaboration and the value of the publicity generated at estimated US$100 million. The lack of available stock, despite the enormous hype created, reinforced Missoni’s luxury image. Missoni was able to gain massive awareness of the brand despite not employing any of its own communication channels in the promotion of the collaboration. However the co-branded collaboration was distinctively Missoni, potentially inciting comparison and confusion with the signature line. Nevertheless, this study shows that co-branding strategies can offer a viable opportunity for luxury brands to increase their market share, while they maintain their market position.
Resumo:
In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
Resumo:
Novel filter Palygorskite porous ceramsite (PC) was prepared using Palygorskite clay, poreforming material sawdust, and sodium silicate with a mass ratio of 10:2:1 after sintering at 700°C for 180 min. PC was characterized with X-ray diffraction, X-ray fluorescence, scanning electron microscopy, elemental, and porosimetry. PC had a total porosity of 67% and specific surface area of 61 m2/g. In order to assess the usefulness of PC as a medium for biological aerated filters (BAF), PC and (commercially available ceramsite) CAC were used to treat wastewater city in two laboratory-scale upflow BAFs. The results showed that the reactor containing PC was more efficient than the reactor containing CAC in terms of total organic carbon (TOC), ammonia nitrogen (NH3-N), and the removal of total nitrogen (TN) and phosphorus (P). This system was found to be more efficient at water temperatures ranging from 20 to 26°C, an air–water (A/W) ratio of 3:1, dissolved oxygen concentration >4.00 mg/L, and hydraulic retention time (HRT) ranging from 0.5 to 7 h. The interconnected porous structure produced for PC was suitable for microbial growth, and primarily protozoan and metazoan organisms were found in the biofilm. Microorganism growth also showed that, under the same submerged culture conditions, the biological mass in PC was significantly higher than in CAC (34.1 and 2.2 mg TN/g, respectively). In this way, PC media can be considered suitable for the use as a medium in novel biological aerated filters for the simultaneous removal of nitrogen and phosphorus.
Resumo:
The development of vocalizations during postnatal growth in the flat-headed bats, Tylonycteris pachypus and T. robustula in South China is described. Females of both species gave birth to twins at the end of May, and the infants flew in the last ten days of June. Vocalizations served as precursors to echolocation calls and as isolation calls (i-calls) used to attract mothers. As the infants grew, the frequency of i-calls and precursor calls increased. The duration of i-calls increased little before 6-day old and then decreased. At the same time, the duration of echolocation precursor calls decreased. The directive calls that the mother or the infant emitted when searching for each other are also described. Female directive calls are lower in frequency and longer in duration than their echolocation calls, and the duration of infant directive calls is longer than those of the i-calls and precursor calls.
Resumo:
100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.
Resumo:
A long-held assumption in entrepreneurship research is that normal (i.e., Gaussian) distributions characterize variables of interest for both theory and practice. We challenge this assumption by examining more than 12,000 nascent, young, and hyper-growth firms. Results reveal that variables which play central roles in resource-, cognition-, action-, and environment-based entrepreneurship theories exhibit highly skewed power law distributions, where a few outliers account for a disproportionate amount of the distribution's total output. Our results call for the development of new theory to explain and predict the mechanisms that generate these distributions and the outliers therein. We offer a research agenda, including a description of non-traditional methodological approaches, to answer this call.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.
Resumo:
This book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
Research demonstrates that education programs are more effective when their target audiences and other key stakeholder groups are involved in the design. The majority of programs continue to be researcher and expert driven. This study extends upon previous research by employing a co-creation research design to offer a consumer driven alternative to education program design. Two co-creation groups involving twenty 14-16 year old Year 10 students who had previously participated in the Game On:Know Alcohol (GOKA) program, which aims to moderate alcohol drinking attitudes and behaviour, were conducted. Analysis revealed that a co-created GOKA program will differ substantially from the researcher and expert driven program that is currently being field tested. Students prefer interactive activities and activities that engage and challenge. Co-creation offers the potential to contest researcher and expert views and may offer to assist in the generation of new insights for the development of education programs.