820 resultados para Piling (Civil engineering)
Resumo:
A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information.
Resumo:
An analytical solution is presented in this paper for the vibration response of a ribbed plate clamped on all its boundary edges by employing a travelling wave solution. A clamped ribbed plate test rig is also assembled in this study for the experimental investigation of the ribbed plate response and to provide verification results to the analytical solution. The dynamic characteristics and mode shapes of the ribbed plate are measured and compared to those obtained from the analytical solution and from finite element analysis (FEA). General good agreements are found between the results. Discrepancies between the computational and experimental results at low and high frequencies are also discussed. Explanations are offered in the study to disclose the mechanism causing the discrepancies. The dependency of the dynamic response of the ribbed plate on the distance between the excitation force and the rib is also investigated experimentally. It confirms the findings disclosed in a previous analytical study [T. R. Lin and J. Pan, A closed form solution for the dynamic response of finite ribbed plates. Journal of the Acoustical Society of America 119 (2006) 917-925] that the vibration response of a clamped ribbed plate due to a point force excitation is controlled by the plate stiffness when the source is more than a quarter plate bending wavelength away from the rib and from the plate boundary. The response is largely affected by the rib stiffness when the source location is less than a quarter bending wavelength away from the rib.
Resumo:
Corrosion is a common phenomenon and critical aspects of steel structural application. It affects the daily design, inspection and maintenance in structural engineering, especially for the heavy and complex industrial applications, where the steel structures are subjected to hash corrosive environments in combination of high working stress condition and often in open field and/or under high temperature production environments. In the paper, it presents the actual engineering application of advanced finite element methods in the predication of the structural integrity and robustness at a designed service life for the furnaces of alumina production, which was operated in the high temperature, corrosive environments and rotating with high working stress condition.
Resumo:
Since predictions of scalar dispersion in small estuaries can rarely be predicted accurately, new field measurements were conducted continuously at relatively high frequency for up to 50 h (per investigation) in a small subtropical estuary with semidiurnal tides. The bulk flow parameters varied in time with periods comparable to tidal cycles and other large-scale processes. The turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of parameters including the tidal conditions and bathymetry. A striking feature of the data sets was the large fluctuations in all turbulence characteristics during the tidal cycle, and basic differences between neap and spring tide turbulence.
Resumo:
Fundamental studies on constructability issue done in United States, United Kingdom and Australia illustrate capability of this concept to affect overall objectives of construction projects. It can result in significant cost and time savings and improved final quality by consideration of construction contractors experiences during conceptual planning and design phases. As intensive as these studies are, they do not attempt to investigate importance of these activities in order to find each of their specific barriers separately. This research explores Constructability Activities (CAs) in all project phases separately based on amount of contractors involvement in each activity and also amount of gap that exists between target and actual effects of each activity on achieving the final objectives of building projects in Malaysia. It ends to development of Critical Constructability Activities (CCAs). This research is crucial to gaining a better understanding of CCAs which are caused based on contractors higher participation percentage and larger gaps between their target and actual effects on achieving the final aims of the project. This research highlights the need to overcome barriers of CAs implementation in building projects. This study recommends construction stakeholders to concentrate more on CCAs in order to achieve the overall objectives of the project much faster and easier.
Resumo:
Fiber Bragg grating (FBG) sensor technology has been attracting substantial industrial interests for the last decade. FBG sensors have seen increasing acceptance and widespread use for structural sensing and health monitoring applications in composites, civil engineering, aerospace, marine, oil & gas, and smart structures. One transportation system that has been benefitted tremendously from this technology is railways, where it is of the utmost importance to understand the structural and operating conditions of rails as well as that of freight and passenger service cars to ensure safe and reliable operation. Fiberoptic sensors, mostly in the form of FBGs, offer various important characteristics, such as EMI/RFI immunity, multiplexing capability, and very long-range interrogation (up to 230 km between FBGs and measurement unit), over the conventional electrical sensors for the distinctive operational conditions in railways. FBG sensors are unique from other types of fiber-optic sensors as the measured information is wavelength-encoded, which provides self-referencing and renders their signals less susceptible to intensity fluctuations. In addition, FBGs are reflective sensors that can be interrogated from either end, providing redundancy to FBG sensing networks. These two unique features are particularly important for the railway industry where safe and reliable operations are the major concerns. Furthermore, FBGs are very versatile and transducers based on FBGs can be designed to measure a wide range of parameters such as acceleration and inclination. Consequently, a single interrogator can deal with a large number of FBG sensors to measure a multitude of parameters at different locations that spans over a large area.
Resumo:
Partially grouted wider reinforced masonry wall, built predominantly with the use of face shell bedded hollow concrete blocks, is adopted extensively in the cyclonic areas due to its economy. Its out-of-plane response to lateral pressure loading is well definied; however its in-plane shear behaviour is less well understood, in particular it is unclear how the grouted reinforced cores affect the load paths within the wall. For the rational design of the walls, clarification is sought as to whether the wall acts as a composite of unreinforced panels surrounded by the reinforced cores or simply as a continuum embedded with reinforcement at wider spacing. This paper reports four full scale walls tested under in-place cyclic shear loading to provide some insight into the effect of the grout cores in altering the load paths within the wall. The global lateral load - lateral deflection hysteretic curves as well as the local responses of some critical zones of the shear walls are presented. It is shown that the aspect ratio of the unreinforced masonry panels surrounded by the reinforced grouted cores within the shear walls have profound effect in ascertaining the behaviour of the shear walls.
Resumo:
Masonry is one of the most ancient construction materials in the World. When compared to other civil engineering practices, masonry construction is highly labour intensive, which can affect the quality and productivity adversely. With a view to improving quality and in light of the limited skilled labour in the recent times several innovative masonry construction methods such as the dry stack and the thin bed masonry have been developed. This paper focuses on the thin bed masonry system, which is used in many parts of Europe. Thin bed masonry system utilises thin layer of polymer modified mortars connecting the accurately dimensioned and/or interlockable units. This assembly process has the potential for automated panelised construction system in the industry setting or being adopted in the site using less skilled labour, without sacrificing the quality. This is because unlike the conventional masonry construction, the thin bed technology uses thinner mortar (or glue) layer which can be controlled easily through some novel methods described in this paper. Structurally, reduction in the thickness of the mortar joint has beneficial effects; for example it increases the compressive strength of masonry; in addition polymer added glue mortar enhances lateral load capacity relative to conventional masonry. This paper reviews the details of the recent research outcomes on the structural characteristics and construction practices of thin bed masonry. Finally the suitability of thin bed masonry in developing countries where masonry remains as the most common material for residential building construction is discussed.
Resumo:
Despite an increasing highlight on the sustainability agenda by the construction industry, sustainable development is often treated with different philosophy, interpretation, and responsibility at various stages of project development by various stakeholders involved. The actual sustainability deliverables from the industry is not substantially tangible, especially at project levels. For infrastructure projects which typically span over long periods of time, achieving consistent sustainability outcomes during various stages of development remains as a formidable task. The absence of common understanding among stakeholders and the lack of appropriate sustainability reporting mechanism are possible causes. Many policies dealing with these issues tend to be too generic and broad-based for practical adaptation. While there had been a plenty of research initiatives on sustainability assessment, there is often a gap between sustainability deliverables during project implementation and the grandeur of promises during project conception. This paper reviews the historical context of sustainable development and its principles, and past studies on sustainable construction, focusing on infrastructure projects. It goes on to introduce a QUT research project aimed at identifying and integrating the different perceptions and priority needs of the stakeholders, along with identifying issues that impact on the gap between sustainability foci and its actual realization at project end level, in order to generate a framework of enhancing sustainable deliverables. It is expected that the research will help promote more integrated approaches to decision-making on the implementation of sustainability strategies and foci during the construction project delivery processes.
Resumo:
The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector infrastructure market, especially in the very large economic infrastructure sector procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI). This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors into Australia. Elsewhere, the authors have developed Dunning’s principal hypothesis to suit the context of this research and to address a weakness arising in this hypothesis that is based on a nominal approach to the factors in Dunning's eclectic framework and which fails to speak to the relative explanatory power of these factors. In this paper, a first stage test of the authors' development of Dunning's hypothesis is presented by way of an initial review of secondary data vis-à-vis the selected sector (roads and bridges) in Australia (as the host location) and with respect to four selected home countries (China; Japan; Spain; and US). In doing so, the next stage in the research method concerning sampling and case studies is also further developed and described in this paper. In conclusion, the extent to which the initial review of secondary data suggests the relative importance of the factors in the eclectic framework is considered. It is noted that more robust conclusions are expected following the future planned stages of the research including primary data from the case studies and a global survey of the world’s largest contractors and which is briefly previewed. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
The Request For Proposal (RFP) with the design‐build (DB) procurement arrangement is a document in which an owner develops his requirements and conveys the project scope to DB contractors. Owners should provide an appropriate level of design in DB RFPs to adequately describe their requirements without compromising the prospects for innovation. This paper examines and compares the different levels of owner‐provided design in DB RFPs by the content analysis of 84 requests for RFPs for public DB projects advertised between 2000 and 2010 with an aggregate contract value of over $5.4 billion. A statistical analysis was also conducted in order to explore the relationship between the proportion of owner‐provided design and other project information, including project type, advertisement time, project size, contractor selection method, procurement process and contract type. The results show that the majority (64.8%) of the RFPs provide less than 10% of the owner‐provided design. The owner‐provided design proportion has a significant association with project type, project size, contractor selection method and contract type. In addition, owners are generally providing less design in recent years than hitherto. The research findings also provide owners with perspectives to determine the appropriate level of owner‐provided design in DB RFPs.
Resumo:
New knowledge has raised a concern about the cost-ineffective design methods and the true performance of railroad prestressed concrete ties. Because of previous knowledge deficiencies, railway civil and track engineers have been aware of the conservative design methods for structural components in any railway track that rely on allowable stresses and material strength reductions. In particular, railway sleeper (or railroad tie) is an important component of railway tracks and is commonly made of prestressed concrete. The existing code for designing such components makes use of the permissible stress design concept, whereas the fiber stresses over cross sections at initial and final stages are limited by some empirical values. It is believed that the concrete ties complying with the permissible stress concept possess unduly untapped fracture toughness, based on a number of proven experiments and field data. Collaborative research run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (Rail CRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete ties that were designed using the existing design code. The findings have led to the development of a new limit-states design concept. This paper highlights the conventional and the new limit-states design philosophies and their implication to both the railway community and the public. © 2011 American Society of Civil Engineers.
Resumo:
Buildings are one of the most significant infrastructures in modern societies. The construction and operation of modern buildings consume a considerable amount of energy and materials, therefore contribute significantly to the climate change process. In order to reduce the environmental impact of buildings, various green building rating tools have been developed. In this paper, energy uses of the building sector in Australia and over the world are first reviewed. This is then followed by discussions on the development and scopes of various green building rating tools, with a particular focus on the Green Star rating scheme developed in Australia. It is shown that Green Star has significant implications on almost every aspect of the design of HVAC systems, including the selection of air handling and distribution systems, fluid handling systems, refrigeration systems, heat rejection systems and building control systems.