368 resultados para Pharmaceutical Sciences (111504)
Resumo:
133Cs relaxation-time studies of tissues from rats into which cesium has been incorporated by dietary loading have been carried out in vivo and in vitro. Whereas tissue T1 values are on the order of seconds, T2 values are as low as a few tens of milliseconds, 133Cs tissue relaxation times are analogous to those of 39K in the same tissues, but are more readily measured because of the greater sensitivity of 133Cs compared with 39K, T1 and T2 data of excised tissue at two resonance frequencies (65.60 and 39.37 MHz) and temperatures (302 and 278 K) have been analyzed in terms of a general description of spin- relaxation. The results are consistent with most of the cesium ions being in a free state, undergoing fast exchange with bound ions having long correlation times located in one or more intracellular compartments,
Resumo:
1. Both dietary magnesium depletion and potassium depletion (confirmed by tissue analysis) were induced in rats which were then compared with rats treated with chlorothiazide (250 mg/kg diet) and rats on a control synthetic diet. 2. Brain and muscle intracellular pH was measured by using a surface coil and [31P]-NMR to measure the chemical shift of inorganic phosphate. pH was also measured in isolated perfused hearts from control and magnesium-deficient rats. Intracellular magnesium status was assessed by measuring the chemical shift of β-ATP in brain. 3. There was no evidence for magnesium deficiency in the chlorothiazide-treated rats on tissue analysis or on chemical shift of β-ATP in brain. Both magnesium and potassium deficiency, but not chlorothiazide treatment, were associated with an extracellular alkalosis. 4. Magnesium deficiency led to an intracellular alkalosis in brain, muscle and heart. Chlorothiazide treatment led to an alkalosis in brain. Potassium deficiency was associated with a normal intracellular pH in brain and muscle. 5. Magnesium depletion and chlorothiazide treatment produce intracellular alkalosis by unknown mechanism(s).
Resumo:
Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.
Resumo:
Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.
Resumo:
Corticotropin releasing factor (CRF) has been shown to induce various behavioral changes related to adaptation to stress. Dysregulation of the CRF system at any point can lead to a variety of psychiatric disorders, including substance use disorders (SUDs). CRF has been associated with stress-induced drug reinforcement. Extensive literature has identified CRF to play an important role in the molecular mechanisms that lead to an increase in susceptibility that precipitates relapse to SUDs. The CRF system has a heterogeneous role in SUDs. It enhances the acute effects of drugs of abuse and is also responsible for the potentiation of drug-induced neuroplasticity evoked during the withdrawal period. We present in this review the brain regions and circuitries where CRF is expressed and may participate in stress-induced drug abuse. Finally, we attempt to evaluate the role of modulating the CRF system as a possible therapeutic strategy for treating the dysregulation of emotional behaviors that result from the acute positive reinforcement of substances of abuse as well as the negative reinforcement produced by withdrawal.