161 resultados para PLC and SCADA programming
Resumo:
In this paper we analyse two variants of SIMON family of light-weight block ciphers against variants of linear cryptanalysis and present the best linear cryptanalytic results on these variants of reduced-round SIMON to date. We propose a time-memory trade-off method that finds differential/linear trails for any permutation allowing low Hamming weight differential/linear trails. Our method combines low Hamming weight trails found by the correlation matrix representing the target permutation with heavy Hamming weight trails found using a Mixed Integer Programming model representing the target differential/linear trail. Our method enables us to find a 17-round linear approximation for SIMON-48 which is the best current linear approximation for SIMON-48. Using only the correlation matrix method, we are able to find a 14-round linear approximation for SIMON-32 which is also the current best linear approximation for SIMON-32. The presented linear approximations allow us to mount a 23-round key recovery attack on SIMON-32 and a 24-round Key recovery attack on SIMON-48/96 which are the current best results on SIMON-32 and SIMON-48. In addition we have an attack on 24 rounds of SIMON-32 with marginal complexity.
Resumo:
Metabolic programming during the perinatal period as a consequence of early nutrition is an emerging area of great interest. This concept is known as the "fetal origins of adult disease" theory (1). Numerous epidemiological studies published over the past 20 years or so have suggested that small body size at birth and during infancy and, more specifically, intrauterine growth retardation are associated later in life with lowered cognitive performance and increased rates of coronary heart disease and its major biological risk factors, ie, raised blood pressure, insulin resistance, coronary artery disease, and abnormalities in lipid metabolism. The molecular mechanisms that govern this phenomenon in humans, however, are unknown and need to be elucidated.
Resumo:
Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics
Resumo:
As an art form, film has arguably always functioned as a stronghold for memory. Memories unfold in the stories told on screen, and remain preserved in the experiences of the audience viewing the film, at a particular time and place. The environment of a film festival further alters the viewing experience and its relationship to memory. The Brisbane International Film Festival (BIFF) was founded in 1992. After considerable disruption due to economic and socio-political changes, it took place for the last time in 2013. The change in BIFF’s leadership and programming agenda significantly impacted the festival’s image and its position on the wider festival circuit. Through an examination of cinema and memory) it will be argued that film festivals operate as (temporary) sites of memory, through the programming and screening of films, engagement with local audiences, and promotion of film culture. This specific and unique ‘festival memory’ inextricably links to the audience and the venue, and is curated by the festival programmers and staff, who carry a wealth of knowledge (not necessarily recorded), of past festivals, successes, and failures. The people involved, the festival staff and audience, act as caretakers of this ‘festival memory.’ This essay will therefore examine how the BIFF and its home, the Regent Theatre, have functioned as crucial ‘sites of memory’ for film and film culture in Brisbane, Australia.
Resumo:
In recent years more and more complex humanoid robots have been developed. On the other hand programming these systems has become more difficult. There is a clear need for such robots to be able to adapt and perform certain tasks autonomously, or even learn by themselves how to act. An important issue to tackle is the closing of the sensorimotor loop. Especially when talking about humanoids the tight integration of perception with actions will allow for improved behaviours, embedding adaptation on the lower-level of the system.
Resumo:
This research studied distributed computing of all-to-all comparison problems with big data sets. The thesis formalised the problem, and developed a high-performance and scalable computing framework with a programming model, data distribution strategies and task scheduling policies to solve the problem. The study considered storage usage, data locality and load balancing for performance improvement in solving the problem. The research outcomes can be applied in bioinformatics, biometrics and data mining and other domains in which all-to-all comparisons are a typical computing pattern.
Resumo:
Many countries over the last decade, have used performance-based contracting (PBC) to manage and maintain roads. The implementation of PBC provides additional benefits for the government/public such as cost savings and improved conditions of contracted road assets. In Australia, PBC is already being implemented on all categories of roads: national, state, urban and rural. Australian PBC arrangement is designed to turn over control and responsibility for roadway system maintenance, rehabilitation, and capital improvement projects to private contractors. Contractors’ responsibilities include determination of treatment types, the design, programming and the undertaking of works needed to maintain road networks at predetermined performance levels. Indonesia initiated two PBC pilot projects in 2011, the Pantura Section Demak-Trengguli (7.68 kilometers) in Central Java Province and Section Ciasem-Pamanukan (18.5 kilometers) in West Java Province. Both sections are categorized as national roads. The contract duration for both of these projects is four years. To facilitate a possible way forward, it is proposed to conduct a study to understand Australia's experiences of advancing from pilot projects to nation-wide programs using PBC. The study focuses on the scope of contracts, bidding processes, risk allocation, and key drivers, using relevant PBC case studies from Australia. Recommendations for future PBC deployment nation-wide should be based on more research associated with risk allocation. This will include investigation of standard conditions of contract. Implications of the contract clauses for the risk management strategy to be adopted by contractors. Based on the nature of risks, some are best managed by the project owner. It is very important that all parties involved to be open to the new rules of contract and to convince themselves about the potential increased benefits of the use of PBC. The most recent states of challenging issues were explored and described.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
Robotics is taught in many Australian ICT classrooms, in both primary and secondary schools. Robotics activities, including those developed using the LEGO Mindstorms NXT technology, are mathematics-rich and provide a fertile round for learners to develop and extend their mathematical thinking. However, this context for learning mathematics is often under-exploited. In this paper a variant of the model construction sequence (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) is proposed, with the purpose of explicitly integrating robotics and mathematics teaching and learning. Lesh et al.’s model construction sequence and the model eliciting activities it embeds were initially researched in primary mathematics classrooms and more recently in university engineering courses. The model construction sequence involves learners working collaboratively upon product-focussed tasks, through which they develop and expose their conceptual understanding. The integrating model proposed in this paper has been used to design and analyse a sequence of activities in an Australian Year 4 classroom. In that sequence more traditional classroom learning was complemented by the programming of LEGO-based robots to ‘act out’ the addition and subtraction of simple fractions (tenths) on a number-line. The framework was found to be useful for planning the sequence of learning and, more importantly, provided the participating teacher with the ability to critically reflect upon robotics technology as a tool to scaffold the learning of mathematics.
Resumo:
Because of the bottlenecking operations in a complex coal rail system, millions of dollars are costed by mining companies. To handle this issue, this paper investigates a real-world coal rail system and aims to optimise the coal railing operations under constraints of limited resources (e.g., limited number of locomotives and wagons). In the literature, most studies considered the train scheduling problem on a single-track railway network to be strongly NP-hard and thus developed metaheuristics as the main solution methods. In this paper, a new mathematical programming model is formulated and coded by optimization programming language based on a constraint programming (CP) approach. A new depth-first-search technique is developed and embedded inside the CP model to obtain the optimised coal railing timetable efficiently. Computational experiments demonstrate that high-quality solutions are obtainable in industry-scale applications. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and specific criteria. Keywords Train scheduling · Rail transportation · Coal mining · Constraint programming