183 resultados para Non Ideal System
Resumo:
This paper explores a new breed of energy storage system interfacing for grid connected photovoltaic (PV) systems. The proposed system uses the popular dual inverter topology in which one inverter is supplied by a PV cell array and the other by a Battery Energy Storage System (BESS). The resulting conversion structure is controlled in a way that both demand matching and maximum power point tracking of the PV cell array are performed simultaneously. This dual inverter topology can produces 2, 3, 4 and 5 level inverter voltage waveforms at the dc-link voltage ratios of 0:1, 1:1, 2:1 and 3:2 respectively. Since the output voltage of the PV cell array and the battery are uncorrelated and dynamically change, the resulting dc-link voltage ratio can take non-integer values as well. These noninteger dc-link voltage ratios produce unevenly distributed space vectors. Therefore, the main issue with the proposed system is the generation of undistorted current even in the presence of unevenly distributed and dynamically changing space vectors. A modified space vector modulation method is proposed in this paper to address this issue and its efficacy is proved by simulation results. The ability of the proposed system to act as an active power source is also verified.
Resumo:
The population is ageing. Globally, the number of older adults (aged 60 years or over) is expected to more than double, from 841 million people in 2013 to more than 2 billion in 2050.1 In light of the increasing size of the older adult population, there is a pressing need to better identify the nature of, and mechanisms underlying, age-related vision impairment and the functional impact it has on the performance of everyday activities in older adults. The content of this feature issue reflects the diversity of research currently being undertaken on the topic of the ageing visual system and the important visual challenges that this presents for our ageing patient population. The scope is broad and includes topics relating to three main related themes: 1) The treatment of age-related ocular disorders and diseases and their consequences, including presbyopia and AMD; 2) The impact of age-related visual changes on everyday activities in older people, including mobility, driving and falls, and; 3) The interaction of age-related visual impairments and other age-related impairments including hearing and cognitive changes.
Resumo:
Understanding the natural variability of the Earth's climate system and accurately identifying potential anthropogenic influences requires long term, geographically distributed records of key climate indicators, such as temperature and precipitation that extend prior to the last 400. years of the Holocene. Reef corals provide an excellent source of high resolution climate records, and importantly represent the tropical marine environment where palaeoclimate data are urgently required. Recent decades have seen significant improvement in our understanding of coral biomineralisation, the associated uptake of geochemical proxies and methods of identifying and understanding the effects of both early and late, post depositional diagenetic alteration. These processes all have significant implications for interpreting geochemical proxies relevant to palaeoclimatic reconstructions. This paper reviews the current 'state of the art' in terms of coral based palaeoclimate reconstructions and highlights a key remaining problem. The majority of coral based palaeoclimate research has been derived from massive colonies of Porites. However, massive Porites are not globally abundant and may not provide material of a particular age of interest in those regions where they are present. Therefore, there is great potential for alternate coral genera to act as complimentary climate archives. While it remains critical to consider five key factors - vital effects, differential growth morphologies, geochemical heterogeneity in the skeletal ultrastructure, transfer equation selection and diagenetic screening of skeletal material - in order to allow the highest level of accuracy in coral palaeoclimate reconstructions, it is also important to develop alternate taxa for palaeoclimate studies in regions where Porites colonies are absent or rare. Currently as many as nine genera other than Porites have proven at least limited utility in palaeothermometry, most of which are found in the Atlantic/Caribbean region where massive Porites do not exist. Even branching taxa such as Acropora have significant potential to preserve environmental archives. Increasing this capability will greatly expand the number of potential geochemical archives available for longer term temporal records of palaeoclimate.
Resumo:
It is well established that the traditional taxonomy and nomenclature of Chironomidae relies on adult males whose usually characteristic genitalia provide evidence of species distinction. In the early days some names were based on female adults of variable distinctiveness – but females are difficult to identify (Ekrem et al. 2010) and many of these names remain dubious. In Russia especially, a system based on larval morphology grew in parallel to the conventional adult-based system. The systems became reconciled with the studies that underlay the production of the Holarctic generic keys to Chironomidae, commencing notably with the larval volume (Wiederholm, 1983). Ever since Thienemann’s pioneering studies, it has been evident that the pupa, notably the cast skins (exuviae) provide a wealth of features that can aid in identification (e.g. Wiederholm, 1986). Furthermore, the pupae can be readily associated with name-bearing adults when a pharate (‘cloaked’) adult stage is visible within the pupa. Association of larvae with the name-bearing later stages has been much more difficult, time-consuming and fraught with risk of failure. Yet it is identification of the larval stage that is needed by most applied researchers due to the value of the immature stages of the family in aquatic monitoring for water quality, although the pupal stage also has advocates (reviewed by Sinclair & Gresens, 2008). Few use the adult stage for such purposes as their provenance and association with the water body can be verified only by emergence trapping, and sampling of adults lies outside regular aquatic monitoring protocols.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.
Resumo:
The present study deals with two dimensional, numerical simulation of railway track supporting system subjected to dynamic excitation force. Under plane strain condition, the coupled finite-infinite elements to represent the near and far field stress distribution and thin layer interface element was employed to model the interfacial behavior between sleepers and ballast. To account for the relative debonding, slipping and crushing that could take place in the contact area between the sleepers and ballast, modified Mohr-Coulomb criterion was adopted. Furthermore an attempt has been made to consider the elasto-plastic material non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and supporting materials. Based on the proposed physical and constitutive modeling a code has been developed for dynamic loads. The applicability of the developed F.E code has been demonstrated by analyzing a real railway supporting structure.
Resumo:
Background: The inconsistent definition of non-therapeutic medication omissions, under-reporting, and a poor understanding of their associated factors hamper efforts to improve medication administration practices. Aim: To examine the incidence of non-therapeutic medication omissions among acutely ill medical and surgical adult patients; and to identify the patient-, drug- and system-related predictors of these omissions. Method: A medication chart audit of 288 acutely ill adult medical and surgical patients admitted to 4 target wards (2 surgical and 2 medical) at an Australian hospital. Patients admitted to these wards from December 2008 to November 2009, with at least one regularly prescribed medication, were eligible. The sample was stratified according to gender, season and ward. A medication chart audit identified medication omissions, and data were collected on gender, age, length of stay, comorbidities, medication history and clinical pharmacy review. Results: Of the 288 medication charts audited, 220 (75%) had one or more medication omissions. Of the 15 020 medication administration episodes, there were 1687 omissions, resulting in an omission rate per medication administration episode of 11%. Analgesics and aperients were the most frequently omitted medications, with failure to sign the medication record and patient refusal, the main reasons for omission. Female gender (p < 0.001) and the number of medication administration episodes (p < 0.001) were statistically significant predictors of non-therapeutic medication omissions. Conclusion: The high incidence of medication omissions suggests there is need for an agreed definition of medication omission and its inclusion as a reportable incident. Increasing medication reconciliation via implementation of the Medication Management Plan may also reduce the opportunity for error. J Pharm Pract Res 2011; 41: 188-91.
Resumo:
The present contribution deals with the numerical modelling of railway track-supporting systems-using coupled finite-infinite elements-to represent the near and distant field stress distribution, and also employing a thin layer interface element to account for the interfacial behaviour between sleepers and ballast. To simulate the relative debonding, slipping and crushing at the contact area between sleepers and ballast, a modified Mohr-Coulomb criterion was adopted. Further more an attempt was made to consider the elasto plastic materials’ non-linearity of the railway track supporting media by employing different constitutive models to represent steel, concrete and other supporting materials. It is seen that during an incremental-iterative mode of load application, the yielding initially started from the edge of the sleepers and then flowed vertically downwards and spread towards the centre of the railway supporting system.
Resumo:
Silane grafted kaolinite (KGS) was prepared through grinding kaolinite and then grafting with 3-aminopropyltriethoxysilane. The influence of KGS on the curing kinetics of cycloaliphatic epoxy resin was studied by non-isothermal differential scanning calorimetry at different heating rates. The reaction activation energy (Ea) was determined based on the Flynn–Wall–Ozawa method. The results of dynamic differential scanning calorimetry (DSC) kinetic analysis show that the surface hydroxyl groups of clay decreases the Ea from 70.6 kJ mol− 1 to 62.8 kJ mol− 1 and accelerates the curing reaction of the epoxy resin. The silane grafting reactions consume the surface hydroxyl groups of kaolinite and lead to a decrease in the catalytic efficiency of KGS in the curing of epoxy resin.
Resumo:
This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.
Resumo:
Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.
Resumo:
The mining industry presents us with a number of ideal applications for sensor based machine control because of the unstructured environment that exists within each mine. The aim of the research presented here is to increase the productivity of existing large compliant mining machines by retrofitting with enhanced sensing and control technology. The current research focusses on the automatic control of the swing motion cycle of a dragline and an automated roof bolting system. We have achieved: * closed-loop swing control of an one-tenth scale model dragline; * single degree of freedom closed-loop visual control of an electro-hydraulic manipulator in the lab developed from standard components.