172 resultados para Neural tumour
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment
Resumo:
A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions. The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of tumour cells to a hypoxic environment may be important in the tumour normalization therapy.
Resumo:
A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micro-environment in host tissues. The hybrid based model includes the continuum part, such as the distributions of oxygen and vascular endothelial growth factors (VEGFs), and the discrete part of tumour cells (TCs) and blood vessel networks. The simulation shows the dynamic process of avascular tumour growth from a few initial cells to an equilibrium state with varied vessel networks. After a phase of rapidly increasing numbers of the TCs, more and more host vessels collapse due to the stress caused by the growing tumour. In addition, the consumption of oxygen expands with the enlarged tumour region. The study also discusses the effects of certain factors on tumour growth, including the density and configuration of preexisting vessel networks and the blood oxygen content. The model enables us to examine the relationship between early tumour growth and hypoxic micro-environment in host tissues, which can be useful for further applications, such as tumour metastasis and the initialization of tumour angiogenesis.
Resumo:
To identify ‘melanoma-specific’ microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA ‘pull-down’ experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
BACKGROUND Tumour necrosis factor (TNF) is a pleiotropic cytokine with a wide range of immunoregulatory effects. Variation in the promoter region of TNF and the neighbouring lymphotoxin alpha (LTA) gene might be associated with endometriosis. METHODS We examined the association between endometriosis and common single-nucleotide polymorphisms (SNPs) or haplotypes in the TNF/LTA region in an Australian sample by analysing 26 SNPs in 958 endometriosis cases and 959 unrelated controls. We selected functional SNPs in the coding and the promoter region of the TNF gene and HapMap tagging SNPs and typed them on a Sequenom MassARRAY platform. A key SNP (rs1800630) in the promoter region typed in previous studies did not give reliable results. Therefore, we also examined a statistically identical (r(2) = 1) SNP (siSNP) (rs2844482), identified using the web based program ssSNPer. RESULTS Genotype completion rate was 99.5% for SNPs spanning a region of 15.5 kb across the TNF/LTA locus. There was no evidence for association between endometriosis and TNF/LTA SNPs or SNP haplotypes in our case-control study. CONCLUSIONS Our data suggest both TNF and LTA genes are not major susceptibility genes for endometriosis.
Resumo:
CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.
Resumo:
Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies.
Resumo:
The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.
Resumo:
Multipotent neural stem cells (NSCs) provide a model to investigate neurogenesis and develop mechanisms of cell transplantation. In order to define improved markers of stemness and lineage specificity, we examined self-renewal and multi-lineage markers during long-term expansion and under neuronal and astrocyte differentiating conditions in human ESC-derived NSCs (hNSC H9 cells). In addition, with proteoglycans ubiquitous to the neural niche, we also examined heparan sulfate proteoglycans (HSPGs) and their regulatory enzymes. Our results demonstrate that hNSC H9 cells maintain self-renewal and multipotent capacity during extended culture and express HS biosynthesis enzymes and several HSPG core protein syndecans (SDCs) and glypicans (GPCs) at a high level. In addition, hNSC H9 cells exhibit high neuronal and a restricted glial differentiative potential with lineage differentiation significantly increasing expression of many HS biosynthesis enzymes. Furthermore, neuronal differentiation of the cells upregulated SDC4, GPC1, GPC2, GPC3 and GPC6 expression with increased GPC4 expression observed under astrocyte culture conditions. Finally, downregulation of selected HSPG core proteins altered hNSC H9 cell lineage potential. These findings demonstrate an involvement for HSPGs in mediating hNSC maintenance and lineage commitment and their potential use as novel markers of hNSC and neural cell lineage specification.
Resumo:
Background Risk-stratification of diffuse large B-cell lymphoma (DLBCL) requires identification of patients with disease that is not cured despite initial R-CHOP. Although the prognostic importance of the tumour microenvironment (TME) is established, the optimal strategy to quantify it is unknown. Methods The relationship between immune-effector and inhibitory (checkpoint) genes was assessed by NanoString™ in 252 paraffin-embedded DLBCL tissues. A model to quantify net anti-tumoural immunity as an outcome predictor was tested in 158 R-CHOP treated patients, and validated in tissue/blood from two independent R-CHOP treated cohorts of 233 and 140 patients respectively. Findings T and NK-cell immune-effector molecule expression correlated with tumour associated macrophage and PD-1/PD-L1 axis markers consistent with malignant B-cells triggering a dynamic checkpoint response to adapt to and evade immune-surveillance. A tree-based survival model was performed to test if immune-effector to checkpoint ratios were prognostic. The CD4*CD8:(CD163/CD68)*PD-L1 ratio was better able to stratify overall survival than any single or combination of immune markers, distinguishing groups with disparate 4-year survivals (92% versus 47%). The immune ratio was independent of and added to the revised international prognostic index (R-IPI) and cell-of-origin (COO). Tissue findings were validated in 233 DLBCL R-CHOP treated patients. Furthermore, within the blood of 140 R-CHOP treated patients immune-effector:checkpoint ratios were associated with differential interim-PET/CT+ve/-ve expression.
Resumo:
The Children’s Cancer Institute in Sydney recently launched an ambitious program. From early next year, scientists will analyse the unique cancer cells of 12 children diagnosed with the most aggressive forms of the disease to find the best treatment for each child. By 2020, they aim to have these individualised treatment options available to all children diagnosed with cancers that have a less than 30% survival rate. This way of tailoring treatment to each person is known as personalised medicine, and advances in DNA sequencing have paved the way for a new era in cancer management.
Resumo:
Current translational and basic prostate cancer research is limited by the number of cell lines that truly reflect the spectrum of disease progression, with most commonly used cell lines being derived from metastatic lesions. There are essentially no prostate cancer cell lines derived from primary tumours or localised disease in wide use.