621 resultados para Network mapping
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.
Resumo:
Probabilistic robot mapping techniques can produce high resolution, accurate maps of large indoor and outdoor environments. However, much less progress has been made towards robots using these maps to perform useful functions such as efficient navigation. This paper describes a pragmatic approach to mapping system development that considers not only the map but also the navigation functionality that the map must provide. We pursue this approach within a bio-inspired mapping context, and use esults from robot experiments in indoor and outdoor environments to demonstrate its validity. The research attempts to stimulate new research directions in the field of robot mapping with a proposal for a new approach that has the potential to lead to more complete mapping and navigation systems.
Resumo:
We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.
Resumo:
Probabilistic robotics, most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainly to accompany observations of the environment. This paper describes how uncertainly can be characterised for a vision system that locates coloured landmark in a typical laboratory environment. The paper describes a model of the uncertainly in segmentation, the internal camera model and the mounting of the camera on the robot. It =plains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainly model,
Resumo:
This paper considers the use of servo-mechanisms as part of a tightly integrated homogeneous Wireless Multi- media Sensor Network (WMSN). We describe the design of our second generation WMSN node platform, which has increased image resolution, in-built audio sensors, PIR sensors, and servo- mechanisms. These devices have a wide disparity in their energy consumption and in the information quality they return. As a result, we propose a framework that establishes a hierarchy of devices (sensors and actuators) within the node and uses frequent sampling of cheaper devices to trigger the activation of more energy-hungry devices. Within this framework, we consider the suitability of servos for WMSNs by examining the functional characteristics and by measuring the energy consumption of 2 analog and 2 digital servos, in order to determine their impact on overall node energy cost. We also implement a simple version of our hierarchical sampling framework to evaluate the energy consumption of servos relative to other node components. The evaluation results show that: (1) the energy consumption of servos is small relative to audio/image signal processing energy cost in WMSN nodes; (2) digital servos do not necessarily consume as much energy as is currently believed; and (3) the energy cost per degree panning is lower for larger panning angles.
Resumo:
The proposals arising from the agreement reached between the Rudd government and the States and Territories (except Western Australia) in April 2010 represent the most fundamental realignment of health responsibilities since the creation of Medicare in 1984. They will change the health system, and the structures that will craft its future direction and design. These proposals will have a significant impact on Emergency Medicine; an impact from not only the system-wide effects of the proposals but also those that derive from the specific recommendations to create an activity-based funding mechanism for EDs, to implement the four hour rule and to develop a performance indicator framework for EDs. The present paper will examine the potential impact of the proposals on Emergency Medicine to inform those who work within the system and to help guide further developments. More work is required to better evaluate the proposals and to guide the design and development of specific reform instruments. Any such efforts should be based upon a proper analysis of the available evidence, and a structured approach to research and development so as to deliver on improved services to the community, and on improved quality and safety of emergency medical care.
Resumo:
A hybrid genetic algorithm/scaled conjugate gradient regularisation method is designed to alleviate ANN `over-fitting'. In application to day-ahead load forecasting, the proposed algorithm performs better than early-stopping and Bayesian regularisation, showing promising initial results.
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
It is increasingly understood that learning and thus innovation often occurs via highly interactive, iterative, network-based processes. Simultaneously, economic development policy is increasingly focused on small and medium-sized enterprises (SMEs) as a means of generating growth, creating a clear research issue in terms of the roles and interactions of government policy, universities, and other sources of knowledge, SMEs, and the creation and dissemination of innovation. This paper analyses the contribution of a range of actors in an SME innovation creation and dissemination framework, reviewing the role of various institutions therein, exploring the contribution of cross-locality networks, and identifying the mechanisms required to operationalise such a framework. Bivariate and multivariate (regression) techniques are employed to investigate both innovation and growth outcomes in relation to these structures; data are derived from the survey responses of over 450 SMEs in the UK. Results are complex and dependent upon the nature of institutions involved, the type of knowledge sought, and the spatial level of the linkages in place but overall highlight the value of cross-locality networks, network governance structures, and certain spillover effects from universities. In general, we find less support for the factors predicting SME growth outcomes than is the case for innovation. Finally, we outline an agenda for further research in the area.