235 resultados para Muscle pain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hallux valgus (HV) is highly prevalent and associated with progressive first metatarsophalangeal joint subluxation and osteoarthritis. The link between structural HV deformity and foot pain is unclear. This study investigated possible explanatory factors surrounding foot pain in HV, including radiographic HV angle and signs of joint degeneration. Methods Participants were 60 adults (53 female) with HV aged 20 to 75 years. Participant demographics and a range of radiographic, clinical and functional measures were considered potential correlates of foot pain. Self-reported foot pain (visual analogue scales and a dichotomous definition) was considered the dependent variable. Multivariate modelling was used to determine which characteristics and measures explained pain, with univariate analyses first used to screen potential variables. Results Approximately 20 to 30% of the variance in foot pain associated with HV could be explained by patient characteristics such as poorer general health status, lower educational attainment and increased occupational physical activity levels, in combination with some dynamic physical characteristics such as hallux plantarflexion weakness and reduced force-time integral under the second metatarsal during gait. Neither increasing lateral deviation of the hallux (HV angle) nor presence of first metatarsophalangeal joint osteoarthritis was associated with foot pain. Conclusions This study shows that passive structural factors, including HV angle, do not appear to be significant correlates of foot pain intensity in HV. Our data demonstrate the importance of considering patient characteristics such as general health and physical activity levels when assessing foot pain associated with HV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY An increased incidence of metabolic disease in horses has led to heightened recognition of the pathological consequences of insulin resistance (IR). Laminitis, failure of the weight-bearing digital lamellae, is an important consequence. Altered trafficking of specialised glucose transporters (GLUTs) responsible for glucose uptake, are central to the dysregulation of glucose metabolism and may play a role in laminitis pathophysiology. OBJECTIVES We hypothesised that prolonged hyperinsulinaemia alters the regulation of glucose transport in insulin-sensitive tissue and digital lamellae. Our objectives were to compare the relative protein expression of major GLUT isoforms in striated muscle and digital lamellae in healthy horses and during hyperinsulinaemia. STUDY DESIGN Randomised, controlled study. METHODS Prolonged hyperinsulinaemia and lamellar damage were induced by a prolonged-euglycaemic hyperinsulinaemic clamp (p-EHC) or a prolonged-glucose infusion (p-GI) and results were compared to electrolyte-treated controls. GLUT protein expression was examined with immunoblotting. RESULTS Lamellar tissue contained more GLUT1 protein than skeletal muscle (p = 0.002) and less GLUT4 than the heart (p = 0.037). During marked hyperinsulinaemia and acute laminitis (induced by the p-EHC), GLUT1 protein expression was decreased in skeletal muscle (p = 0.029) but unchanged in the lamellae, while novel GLUTs (8; 12) were increased in the lamellae (p = 0.03), but not skeletal muscle. However, moderate hyperinsulinaemia and subclinical laminitis (induced by the p-GI) did not cause differential GLUT protein expression in the lamellae vs. control horses. CONCLUSIONS The results suggest that lamellar tissue functions independently of insulin and that IR may not be an essential component of laminitis aetiology. Marked differences in GLUT expression exist between insulin-sensitive and insulin-independent tissues during metabolic dysfunction in horses. The different expression profiles of novel GLUTs during acute and subclinical laminitis may be important to disease pathophysiology and require further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electropermeabilization (EP) is an effective method of gene transfer into different tissues. During EP, reactive oxygen species (ROS) are formed, which could affect transfection efficiency. The role of generated ROS and the role of antioxidants in electrotransfer in myoblasts in vitro and in Musculus tibialis cranialis in mice were, therefore, investigated. We demonstrate in the study that during EP of C2C12 myoblasts, ROS are generated on the surface of the cells, which do not induce long-term genomic DNA damage. Plasmid DNA for transfection (pEGFP-N1), which is present outside the cells during EP, neutralizes the generated ROS. The ROS generation is proportional to the amplitude of the electric pulses and can be scavenged by antioxidants, such as vitamin C or tempol. When antioxidants were used during gene electrotransfer, the transfection efficiency of C2C12 myoblasts was statistically significantly increased 1.6-fold with tempol. Also in vivo, the transfection efficiency of M. tibialis cranialis in mice was statistically significantly increased 1.4-fold by tempol. The study indicates that ROS are generated on cells during EP and can be scavenged by antioxidants. Specifically, tempol can be used to improve gene electrotransfer into the muscle and possibly also to other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. We determined, in young men (n=8) and women (n=7), protein signaling, resting post-absorptive MPS during energy balance [EB: 45 kcal∙(kg FFM∙d)-1] and after 5d of ED [30 kcal∙(kg FFM∙d)-1] as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Post-absorptive rates of MPS were 27% lower in ED than EB (P<0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB, (P<0.02). p70 S6Kthr389 phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold; P<0.05). In conclusion, short-term ED reduces post-absorptive MPS, however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short term ED and could, in the long term, preserve muscle mass.