234 resultados para Multi-Higgs Models
Resumo:
This document provides an overview of the differences and similarities in the objectives and implementation frameworks of the training and employment policies applying to public construction projects in Western Australia and Queensland. The material in the document clearly demonstrates the extent to which approaches to the pursuit of training objectives in particular have been informed by the experiences of other jurisdictions. The two State governments now have very similar approaches to the promotion of training with the WA government basing a good part of its policy approach on the “Queensland model”. As the two States share many similar economic and other characteristics, and have very similar social and economic goals, this similarity is to be expected. The capacity to benefit from the experiences of other jurisdictions is to be welcomed. The similarity in policy approach also suggests a potential for ongoing collaborations between the State governments on research aimed at further improving training and employment outcomes via public construction projects.
Resumo:
This document provides the findings of a national review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different sate road authorities. The investment objectives of Australian road authorities are based on triple-bottom line considerations (social, environmental, economic and political). In some cases, comparing with some social considerations, such as regional economic development, equity, and access to pubic service etc., Benefit-Cost Ratio has limited influence on the decision-making. Australian road authorities have developed various decision support tools. Although Multi-Criteria Analysis has been preliminarily used in case by case study, pavement management systems, which are primarily based on Benefit Cost Analysis, are still the main decision support tool. This situation is not compatible with the triple-bottom line objectives. There is need to fill the gap between decision support tools and decision-making itself. Different decision criteria should be adopted based on the contents of the work. Additional decision criteria, which are able to address social, environmental and political impacts, are needed to develop or identify. Environmental issue plays a more and more important role in decision-making. However, the criteria and respective weights in decision-making process are yet to be clearly identified. Social and political impacts resulted from road infrastructure investment can be identified through Community Perceptions Survey. With accumulative data, prediction models, which are similar as pavement performance models, can be established. Using these models, the decision-makers are able to foresee the social and political consequences of investment alternatives.
Resumo:
Under the Alien Tort Statute United States of America (“America”) Federal Courts have the jurisdiction to hear claims for civil wrongs, committed against non-American citizens, which were perpetrated outside America’s national borders. The operation of this law has confronted American Federal Courts with difficulties on how to manage conflicts between American executive foreign policy and judicial interpretations of international law. Courts began to pass judgment over conduct which was approved by foreign governments. Then in 2005 the American Supreme Court wound back the scope of the Alien Tort Statute. This article will review the problems with the expansion of the Alien Tort Statute and the reasons for its subsequent narrowing.
Resumo:
Current software tools for documenting and developing models of buildings focus on supporting a single user who is a specialist in the specific software used within their own discipline. Extensions to these tools for use by teams maintain the single discipline view and focus on version and file management. There is a perceived need in industry to have tools that specifically support collaboration among individuals from multiple disciplines with both a graphical representation of the design and a persistent data model. This project involves the development of a prototype of such a software tool. We have identified multi-user 3D virtual worlds as an appropriate software base for the development of a collaborative design tool. These worlds are inherently multi-user and therefore directly support collaboration through a sense of awareness of others in the virtual world, their location within the world, and provide various channels for direct and indirect communication. Such software platforms also provide a 3D building and modelling environment that can be adapted to the needs of the building and construction industry. DesignWorld is a prototype system for collaborative design developed by augmenting the Second Life (SL) commercial software platform1 with a collection web-based tools for communication and design. Agents manage communication between the 3D virtual world and the web-based tools. In addition, agents maintain a persistent external model of designs in the 3D world which can be augmented with data such as relationships, disciplines and versions not usually associated with 3D virtual worlds but required in design scenarios.
Resumo:
Iconic and significant buildings are the common target of bombings by terrorists causing large numbers of casualties and extensive property damage. Recent incidents were external bomb attacks on multi-storey buildings with reinforced concrete frames. Under a blast load circumstance, crucial damage initiates at low level storeys in a building and may then lead to a progressive collapse of whole or part of the structure. It is therefore important to identify the critical initial influence regions along the height, width and depth of the building exposed to blast effects and the structure response in order to assess the vulnerability of the structure to disproportionate and progressive collapse. This paper discusses the blast response and the propagation of its effects on a two dimensional reinforced concrete (RC) frame, designed to withstand normal gravity loads. The explicit finite element code, LS DYNA is used for the analysis. A complete RC portal frame seven storeys by six bays is modelled with reinforcement details and appropriate materials to simulate strain rate effects. Explosion loads derived from standard manuals are applied as idealized triangular pressures on the column faces of the numerical models. The analysis reports the influence of blast propagation as displacements and material yielding of the structural elements in the RC frame. The effected regions are identified and classified according to the load cases. This information can be used to determine the vulnerability of multi-storey RC buildings to various external explosion scenarios and designing buildings to resist blast loads.
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
The Multi-outcomes Construction Policies research project, funded by the Cooperative Research Centre for Construction Innovation (Project 2006-036-A), sought to explore the costs and benefits of leveraging social outcomes on public construction contracts. The context of the research project was the trend towards the contracting out of public construction works and the attempts that have been made to use new contractual arrangements with construction companies to construction achieve a wide range of social outcomes. In federal and state jurisdictions it is now common for governments to impose a range of additional requirements on public works contractors that relate to broad social/community objectives. These requirements include commitments to train apprentices and trainees; to provide local and/or indigenous employment opportunities; to buy local materials; and to include art works. The cost and benefits of using public construction contracts to achieve social/community goals have, to our knowledge, not been thoroughly researched in an Australian context. This is likely to reflect in large part the relatively short history of contracting out public works. As Jensen and Stonecash (2004) explain, most previous empirical studies of contracting out have attempted to measure the cost savings achieved through privatization, as this was the focus of policy debate in the 1980s and 1990s. Relatively few studies have addressed the ability of contracting arrangements to ensure the delivery of desired ‘quality’ outcomes1, or the costs of achieving these outcomes via contracting arrangements. One of the potential costs of attempting to leverage social/community outcomes on public construction projects is a reduction in the amount of competition for these projects, with obvious consequences for average bid prices and choice. In jurisdictions, such as Western Australia and Queensland, where currently construction market conditions are already
Resumo:
We present a new penalty-based genetic algorithm for the multi-source and multi-sink minimum vertex cut problem, and illustrate the algorithm’s usefulness with two real-world applications. It is proved in this paper that the genetic algorithm always produces a feasible solution by exploiting some domain-specific knowledge. The genetic algorithm has been implemented on the example applications and evaluated to show how well it scales as the problem size increases.
Resumo:
Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.