469 resultados para Model information
Resumo:
Sustainable urban development and the liveability of a city are increasingly important issues in the context of land use planning and infrastructure management. In recent years, the promotion of sustainable urban development in Australia and overseas is facing various physical, socio-economic and environmental challenges. These challenges and problems arise from the lack of capability of local governments to accommodate the needs of the population and economy in a relatively short timeframe. The planning of economic growth and development is often dealt with separately and not included in the conventional land use planning process. There is also a sharp rise in the responsibilities and roles of local government for infrastructure planning and management. This increase in responsibilities means that local elected officials and urban planners have less time to prepare background information and make decisions. The Brisbane Urban Growth Model has proven initially successful in providing a dynamic platform to ensure timely and coordinated delivery of urban infrastructure. Most importantly, this model is the first step for local governments in moving toward a systematic approach to pursuing sustainable and effective urban infrastructure management.
Resumo:
Measuring the comparative sustainability levels of cities, regions, institutions and projects is an essential procedure in creating sustainable urban futures. This paper introduces a new urban sustainability assessment model: “The Sustainable Infrastructure, Land-use, Environment and Transport Model (SILENT)”. The SILENT Model is an advanced geographic information system and indicator-based comparative urban sustainability indexing model. The model aims to assist planners and policy makers in their daily tasks in sustainable urban planning and development by providing an integrated sustainability assessment framework. The paper gives an overview of the conceptual framework and components of the model and discusses the theoretical constructs, methodological procedures, and future development of this promising urban sustainability assessment model.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to collect numerous business process models. Such models may be linked with each other or mutually overlap, supersede one another and evolve over time. Moreover, they may be represented at different abstraction levels depending on the target audience and modeling purpose, and may be available in multiple languages (e.g. due to company mergers). Thus, it is common that organizations struggle with keeping track of their process models. This demonstration introduces AProMoRe (Advanced Process Model Repository) which aims to facilitate the management of (large) process model collections.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application
Resumo:
This paper provides an overview of the current QUT Spatial Science undergraduate program based in Brisbane, Queensland, Australia. It discusses the development and implementation of a broad-based educational model for the faculty of built environment and engineering courses and specifically to the course structure of the new Bachelor of Urban Development (Spatial Science) study major. A brief historical background of surveying courses is discussed prior to the detailing of the three distinct and complementary learning themes of the new course structure with a graphical course matrix. Curriculum mapping of the spatial science major has been undertaken as the course approaches formal review in late 2010. Work-integrated learning opportunities have been embedded into the curriculum and a brief outline is presented. Some issues relevant to the tertiary surveying/ spatial sector are highlighted in the context of changing higher education environments in Australia.
Resumo:
In recent years, local government infrastructure management practices have evolved from conventional land use planning to more wide ranging and integrated urban growth and infrastructure management approaches. The roles and responsibilities of local government are no longer simply to manage daily operational functions of a city and provide basic infrastructure. Local governments are now required to undertake economic planning, manage urban growth; be involved in major infrastructure planning; and even engage in achieving sustainable development objectives. The Brisbane Urban Growth model has proven initially successful to ensure timely and coordinated delivery of urban infrastructure. This model may be the first step for many local governments to move toward an integrated, sustainable and effective infrastructure management.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective and less error-prone than developing them from scratch. Since process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. To make our approach more applicable, we consider the semantic similarity between labels. Experiments are conducted to demonstrate that our approach is efficient.
Resumo:
Business process models are becoming available in large numbers due to their popular use in many industrial applications such as enterprise and quality engineering projects. On the one hand, this raises a challenge as to their proper management: How can it be ensured that the proper process model is always available to the interested stakeholder? On the other hand, the richness of a large set of process models also offers opportunities, for example with respect to the re-use of existing model parts for new models. This paper describes the functionalities and architecture of an advanced process model repository, named APROMORE. This tool brings together a rich set of features for the analysis, management and usage of large sets of process models, drawing from state-of-the art research in the field of process modeling. A prototype of the platform is presented in this paper, demonstrating its feasibility, as well as an outlook on the further development of APROMORE.
Resumo:
As more and more information is available on the Web finding quality and reliable information is becoming harder. To help solve this problem, Web search models need to incorporate users’ cognitive styles. This paper reports the preliminary results from a user study exploring the relationships between Web users’ searching behavior and their cognitive style. The data was collected using a questionnaire, Web search logs and think-aloud strategy. The preliminary findings reveal a number of cognitive factors, such as information searching processes, results evaluations and cognitive style, having an influence on users’ Web searching behavior. Among these factors, the cognitive style of the user was observed to have a greater impact. Based on the key findings, a conceptual model of Web searching and cognitive styles is presented.
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Resumo:
Information Overload and Mismatch are two fundamental problems affecting the effectiveness of information filtering systems. Even though both term-based and patternbased approaches have been proposed to address the problems of overload and mismatch, neither of these approaches alone can provide a satisfactory solution to address these problems. This paper presents a novel two-stage information filtering model which combines the merits of term-based and pattern-based approaches to effectively filter sheer volume of information. In particular, the first filtering stage is supported by a novel rough analysis model which efficiently removes a large number of irrelevant documents, thereby addressing the overload problem. The second filtering stage is empowered by a semantically rich pattern taxonomy mining model which effectively fetches incoming documents according to the specific information needs of a user, thereby addressing the mismatch problem. The experimental results based on the RCV1 corpus show that the proposed twostage filtering model significantly outperforms the both termbased and pattern-based information filtering models.
Resumo:
Shrinking product lifecycles, tough international competition, swiftly changing technologies, ever increasing customer quality expectation and demanding high variety options are some of the forces that drive next generation of development processes. To overcome these challenges, design cost and development time of product has to be reduced as well as quality to be improved. Design reuse is considered one of the lean strategies to win the race in this competitive environment. design reuse can reduce the product development time, product development cost as well as number of defects which will ultimately influence the product performance in cost, time and quality. However, it has been found that no or little work has been carried out for quantifying the effectiveness of design reuse in product development performance such as design cost, development time and quality. Therefore, in this study we propose a systematic design reuse based product design framework and developed a design leanness index (DLI) as a measure of effectiveness of design reuse. The DLI is a representative measure of reuse effectiveness in cost, development time and quality. Through this index, a clear relationship between reuse measure and product development performance metrics has been established. Finally, a cost based model has been developed to maximise the design leanness index for a product within the given set of constraints achieving leanness in design process.
Resumo:
This paper introduces a model to facilitate delegation, including ad-hoc delegation, in cross security domain activities. Specifically, this paper proposes a novel delegation constraint management model to manage and track delegation constraints across security domains. An algorithm to trace the authority of delegation constraints is introduced as well as an algorithm to form a delegation constraint set and detect/prevent potential conflicts. The algorithms and the management model are built upon a set of formal definitions of delegation constraints.
Resumo:
The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.