369 resultados para Maximum exercise
Resumo:
Purpose: Eccentric exercise has become the treatment of choice for Achilles tendinopathy. However, little is known about the acute response of tendons to eccentric exercise or the mechanisms underlying its clinical benefit. This research evaluated the sonographic characteristics and acute anteroposterior (AP) strain response of control (healthy), asymptomatic, and symptomatic Achilles tendons to eccentric exercise. Methods: Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Sagittal sonograms of the Achilles tendon were acquired immediately before and after completion of a common eccentric rehabilitation exercise protocol and again 24 h later. Tendon thickness, echogenicity, and AP strain were determined 40 mm proximal to the calcaneal insertion. Results: Compared with the control tendon, both the asymptomatic and symptomatic tendons were thicker (P < 0.05) and hypoechoic (P < 0.05) at baseline. All tendons decreased in thickness immediately after eccentric exercise (P < 0.05). The symptomatic tendon was characterized by a significantly lower AP strain response to eccentric exercise compared with both the asymptomatic and control tendons (P < 0.05). AP strains did not differ in the control and asymptomatic tendons. For all tendons, preexercise thickness was restored 24 h after exercise completion. Conclusions: These observations support the concept that Achilles tendinopathy is a bilateral or systemic process and structural changes associated with symptomatic tendinopathy alter fluid movement within the tendon matrix. Altered fluid movement may disrupt remodeling and homeostatic processes and represents a plausible mechanism underlying the progression of tendinopathy.
Resumo:
Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to −110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n = 10); thigh skin (average, maximum and minimum) and rectal temperature (n = 10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6±1.2°C; CWI, 2.0±1.0°C; 2 cm: WBC, 1.2±0.7°C; CWI, 1.7±0.9°C; 3 cm: WBC, 1.6±0.6°C; CWI, 1.7±0.5°C) and rectal temperature (WBC, 0.3±0.2°C; CWI, 0.4±0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1±1.0°C; CWI, 8.4±0.7°C), minimum (WBC, 13.2±1.4°C; CWI, 8.7±0.7°C) and maximum (WBC, 8.8±2.0°C; CWI, 7.2±1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.
Resumo:
This study aimed to assess the feasibility of a home-based exercise program and examine the effects on the healing rates of venous leg ulcers. A 12 –week randomised controlled trial was conducted investigating the effects of an exercise intervention compared to a usual care group. Participants in both groups (n = 13) had active venous ulceration and were treated in a metropolitan hospital outpatients clinic in Australia. Data were collected on recruitment from medical records, clinical assessment and questionnaires. Follow-up data on progress in healing and treatments were collected fortnightly for 12 weeks. Calf muscle pump function data were collected at baseline and 12 weeks from recruitment. Range of ankle motion data were collected at baseline, 6 and 12 weeks from recruitment. This pilot study indicated that the intervention was feasible. Clinical significance was observed in the intervention group with a 32% greater decrease in ulcer size (p=0.34) than the control group, and a 10% (p=0.74) improvement in the number of participants healed in the intervention group compared to the control group. Significant differences between groups over time were observed in calf muscle pump function parameters; (ejection fraction [p = 0.05]; residual volume fraction [p = 0.04]) and range of ankle motion (p = 0.01). This pilot study is one of the first studies to examine and measure clinical healing rates for participants involved in a home-based progressive resistance exercise program. Further research is warranted with a larger multi-site study.
Resumo:
This project advances current understanding of intra-urban rail passengers and their travel experiences in order to help rail industry leaders tailor policy approaches to fit specific, relevant segments of their target population. Using a Q sorting technique and cluster analysis, our preliminary research identified five perspectives occurring in a small sample of rail passengers, who varied in their frequency and location of rail travel as well as certain socio-demographic characteristics. Revealed perspectives (named to capture the gist of their content) included: ‘Rail Travel is About the Destination, Not the Journey’; ‘Despite Challenges, Public Transport is Still the Best Option’; ‘Rail Travel is Fine’; ‘Rail Travel? So Far, So Good’; and ‘Bad Taste for Rail Travel’. This paper discusses each of the perspectives in detail, and considers them in terms of tailored policy implications. An overarching finding from this study is that improving railway travel ‘access’ requires attention to physical, psychological, financial, and social facets of accessibility. For example, designing waiting areas to be more socially functional and comfortable has the potential to increase ridership by addressing social forms of access, decreasing perceived wait times, and making time at the station feel like time well spent. Even at this preliminary stage, the Q sorting technique promises to provide a valuable, holistic albeit fine-grained analysis of passenger attitudes and experiences that will assist industry efforts to increase ridership.
Resumo:
Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.
Resumo:
Stories by children’s writer Dr. Seuss have often been utilised as non-traditional narrative reflections regarding the issues of ethics and morality (Greenwood, 2000). Such case studies are viewed as effective teaching and learning tools due to the associated analytical and decision-making frameworks that are represented within the texts, and focus upon the exploration of universally general virtues and approaches to ethics (Hankes, 2012). Whilst Dr. Seuss did not create a story directly related to the sport, exercise or performance domains, many of his narratives possess psychological implications that are applicable in any situation that requires ethical consideration of the thinking and choices people make. The following exploration of the ‘ethical places you’ll go’ draws upon references to his work as a guide to navigating this interesting and sometimes challenging landscape for sport, exercise, and performance psychologists (SEPP).
Resumo:
Purpose: The effect of exercise on body mass is likely to be partially mediated through changes in appetite control. However, no studies have examined the effect of chronic exercise on obestatin and cholecystokinin (CCK) plasma concentrations or the sensitivity to detect differences in preload energy in obese individuals. The objective of this study was to investigate the effects of chronic exercise on 1) fasting and postprandial plasma concentrations of obestatin, CCK, leptin, and glucose insulinotropic peptide (GIP) and 2) the accuracy of energy compensation in response to covert preload manipulation. Methods: This study used a 12-wk supervised exercise program in 22 sedentary overweight/obese individuals. Fasting/postprandial plasma concentrations of obestatin, CCK, leptin, and GIP were assessed before and after the intervention. Energy compensation at a 30-min test meal after a high-energy (607 kcal) or a low-energy (246 kcal) preload and for the rest of the day (cumulative energy intake [EI]) was also measured. Results: There was a significant reduction in the plasma concentration of fasting plasma GIP and both fasting and postprandial leptin concentrations after the exercise intervention (P < 0.05 for all). No significant changes were observed for CCK or obestatin. A significant preload–exercise interaction (P = 0.011) was observed on cumulative EI and energy compensation for the same period (−87% ± 196% vs 68% ± 165%, P = 0.011). Weight loss (3.5 ± 1.4 kg, P < 0.0001) was not correlated with changes in energy compensation. Conclusions: This study suggests that exercise improves the accuracy of compensation for previous EI, independent of weight loss. Unexpectedly, and in contrast to GIP and leptin, exercise-induced weight loss had no effect on obestatin or CCK concentrations.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.
Resumo:
AIMS: Increases in inflammatory markers, hepatic enzymes and physical inactivity are associated with the development of the metabolic syndrome (MetS). We examined whether inflammatory markers and hepatic enzymes are correlated with traditional risk factors for MetS and studied the effects of resistance training (RT) on these emerging risk factors in individuals with a high number of metabolic risk factors (HiMF, 2.9 +/- 0.8) and those with a low number of metabolic risk factors (LoMF, 0.5 +/- 0.5). METHODS: Twenty-eight men and 27 women aged 50.8 +/- 6.5 years (mean +/- sd) participated in the study. Participants were randomized to four groups, HiMF training (HiMFT), HiMF control (HiMFC), LoMF training (LoMFT) and LoMF control (LoMFC). Before and after 10 weeks of RT [3 days/week, seven exercises, three sets with intensity gradually increased from 40-50% of one repetition maximum (1RM) to 75-85% of 1RM], blood samples were obtained for the measurement of pro-inflammatory cytokines, C-reactive protein (CRP), gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT). RESULTS: At baseline, HiMF had higher interleukin-6 (33.9%), CRP (57.1%), GGT (45.2%) and ALT (40.6%) levels, compared with LoMF (all P < 0.05). CRP, GGT and ALT correlated with the number of risk factors (r = 0.48, 0.51 and 0.57, respectively, all P < 0.01) and with other anthropometric and clinical measures (r range from 0.26 to 0.60, P < 0.05). RT did not significantly alter inflammatory markers or hepatic enzymes (all P > 0.05). CONCLUSIONS: HiMF was associated with increased inflammatory markers and hepatic enzyme concentrations. RT did not reduce inflammatory markers and hepatic enzymes in individuals with HiMF.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
CC-chemokine receptor 2 (CCR2) and its ligand, monocyte chemotactic protein-1 (MCP-1, also known as CCL2), are crucial for the recruitment of monocytes/macrophages to sites of inflammation. We conducted a series of experiments to investigate the relationship between stress, monocyte CCR2 expression and migration activity. First, we collected peripheral blood mononuclear cells (PBMC) from untrained subjects (n=8) and measured CCR2 expression on CD14(+) monocytes cultured with cortisol, epinephrine and norepinephrine. Second, we collected PBMC from the subjects before and after they cycled for 60 min at 70% peak O(2) uptake (VO2(peak)), and measured alterations in CCR2 expression on monocytes following exercise. Third, we cultured PBMC with serum obtained before and after exercise and the glucocorticoid antagonist RU-486 to determine the effect of cortisol on CCR2 expression in vitro. Last, we measured the ability of PBMC treated with serum or cortisol to migrate through membrane filters in response to CCL2. Cortisol (but not epinephrine or norepinephrine) increased CCR2 expression on monocytes in a dose- and time-dependent manner. Exercise did not influence CCR2 expression on PBMC, whereas incubation of PBMC with post-exercise serum significantly increased CCR2 expression. Both cortisol and post-exercise serum increased the migration of PBMC toward CCL2. The increase in CCR2 expression on PBMC following stimulation with cortisol and serum was blocked by the glucocorticoid receptor antagonist RU-486. In conclusion, cortisol released during exercise increased monocyte CCR2 expression and migration activity in vitro. These alterations may influence inflammation and regeneration of damaged tissue after acute stress.