184 resultados para Light polarization
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
We report herein highly efficient photocatalysts comprising supported nanoparticles (NPs) of gold (Au) and palladium (Pd) alloys, which utilize visible light to catalyse the Suzuki cross-coupling reactions at ambient temperature. The alloy NPs strongly absorb visible light, energizing the conduction electrons of NPs which produce highly energetic electrons at the surface sites. The surface of the energized NPs activates the substrates and these particles exhibit good activity on a range of typical Suzuki reaction combinations. The photocatalytic efficiencies strongly depend on the Au:Pd ratio of the alloy NPs, irradiation light intensity and wavelength. The results show that the alloy nanoparticles efficiently couple thermal and photonic energy sources to drive Suzuki reactions. Results of the density functional theory (DFT) calculations indicate that transfer of the light-excited electrons from the nanoparticle surface to the reactant molecules adsorbed on the nanoparticle surface activates the reactants. The knowledge acquired in this study may inspire further studies of new efficient photocatalysts and a wide range of organic syntheses driven by sunlight.
Resumo:
The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.
Resumo:
An experiment is described that enables students to understand the properties of atmospheric extinction due to Rayleigh scattering. The experiment requires the use of red, green and blue lasers attached to a traveling microscope or similar device. The laser beams are passed through an artificial atmosphere, made from milky water, at varying depths, before impinging on either a light meter or a photodiode integral to a Picotech Dr. DAQ ADC. A plot of measured spectral intensity verses depth reveals the contribution Rayleigh scattering has to the extinction coefficient. For the experiment with the light meter, the extinction coefficient for red, green and blue light in the milky sample of water were 0.27, 0.36 and 0.47 cm-1 respectively and 0.032, 0.037 and 0.092 cm-1 for the Picotech Dr. DAQ ADC.
Resumo:
Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold–palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using “green” oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.
Resumo:
Sleepiness remains a primary cause of road crashes, the major cause of death in young adults. Light is known to produce a direct alerting effect, but little is known about its effects on sleepy drivers. This study aimed to compare the effect of blue-green light and caffeine on young drivers’ cognitive performance after chronic-partial sleep loss.
Resumo:
Red light cameras were introduced in Victoria in August 1983, with the intention of reducing the number of accidents that result from motorists disobeying red traffic signals at signalised intersections. Accident data from 46 treated and 46 control sites from 1981 to 1986 were analysed. The analysis indicated that red light camera use resulted in a reduction in the incidence of right angle accidents, and in the number of accident casualties. Legislation was introduced in March 1986 to place the onus for red light camera offences onto the vehicle owner. This legislation was intended to improve Police efficiency and therefore increase the number of red light cameras in operation. Data supplied by the Police indicated that these aims have beneficial road safety effects.
Resumo:
EXECUTIVE SUMMARY (excerpts) The red light camera (RLC) program commenced in July 1988, with five cameras operating at 15 sites in metropolitan Adelaide. This report deals with the first eighteen months of operation, to December 1989. A number of recommendations have been made… PROGRAM EVALUATION … In 1989 dollars, the program was estimated to have achieved an accident reduction benefit of $1.4m in the first 12 months of operation, which is almost twice the benefit expected using the assumptions made when selecting the sites. (There are 8 recommendations, mostly specific to the particular program characteristics)
Resumo:
Red light cameras were introduced in August 1983 to deter run-the-red offences and therefore to reduce the incidence of right-angle accidents at signalised intersections in Melbourne. This report was prepared after two years of operation of the program. It provides a detailed account of the technical aspects of the program, but does not provide any detailed, evaluative analyses of accident data.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
For the first time, the conversion of crystalline cellulose to valuable chemicals was enhanced by visible-light irradiation using zeolite-based gold nanoparticles (Au-NPs). This plasmon-enhanced photocatalytic conversion significantly improved processing efficiency and achieved a high yield of 60% at relatively low temperature. Moreover, the photocatalytic properties of the photocatalysts varied with the light intensity and the irradiation wavelength.
Resumo:
Visual problems may be the first symptoms of diabetes. There have been several reports of transient changes in refraction of people newly diagnosed with diabetes. Visual acuity and refraction may be affected when there are ocular biometric changes. Small but significant biometrical changes have been found by some authors during hyperglycaemia and during reduction of hyperglycaemia.[4] Here, we describe a case of type 2 diabetes that was detected from ocular straylight and intraocular thickness measurements...
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
In the study, we used the Agilent 8453 spectrophotometer (which is equipped with a limiting aperture that restricts the light beam to the central 5 mm of the contact lens), to measure the transmittance of various coloured contact lenses including the one Day Acuvue define manufactured by Johnson and Johnson which the authors represent. We measured the instrument baseline before the transmittance spectra of lenses were tested. The values of lens transmittances were thus the difference between baseline and lens measurement at each time. The transmittance measurements were obtained at 0.5 nm intervals, from 200 to 700 nm after a soak in saline to remove the influence of any surface active agents within the packaging products. The technique used in our study was not very different from how other research studies [2], [3], [4], [5] and [6] have measured the spectra transmittances of contact lenses...