178 resultados para Light curing
Resumo:
Selective oxidation of aliphatic alcohols under mild and base-free conditions is a challenging process for organic synthesis. Herein, we report a one-pot process for the direct oxidative esterification of aliphatic alcohols that is significantly enhanced by visible-light irradiation at ambient temperatures. The new methodology uses heterogenerous photocatalysts of gold–palladium alloy nanoparticles on a phosphate-modified hydrotalcite support and molecular oxygen as a benign oxidant. The alloy photocatalysts can absorb incident light, and the light-excited metal electrons on the surface of metal nanoparticles can activate the adsorbed reactant molecules. Tuning the light intensity and wavelength of the irradiation can remarkably change the reaction activity. Shorter wavelength light (<550 nm) drives the reaction more efficiently than light of longer wavelength (e.g., 620 nm), especially at low temperatures. The phosphate-exchanged hydrotalcite support provides sufficient basicity (and buffer) for the catalytic reactions; thus, the addition of base is not required. The photocatalysts are efficient and readily recyclable. The findings reveal the first example of using “green” oxidants and light energy to drive direct oxidative esterification of aliphatic alcohols under base-free, mild conditions.
Resumo:
Sleepiness remains a primary cause of road crashes, the major cause of death in young adults. Light is known to produce a direct alerting effect, but little is known about its effects on sleepy drivers. This study aimed to compare the effect of blue-green light and caffeine on young drivers’ cognitive performance after chronic-partial sleep loss.
Resumo:
Red light cameras were introduced in Victoria in August 1983, with the intention of reducing the number of accidents that result from motorists disobeying red traffic signals at signalised intersections. Accident data from 46 treated and 46 control sites from 1981 to 1986 were analysed. The analysis indicated that red light camera use resulted in a reduction in the incidence of right angle accidents, and in the number of accident casualties. Legislation was introduced in March 1986 to place the onus for red light camera offences onto the vehicle owner. This legislation was intended to improve Police efficiency and therefore increase the number of red light cameras in operation. Data supplied by the Police indicated that these aims have beneficial road safety effects.
Resumo:
EXECUTIVE SUMMARY (excerpts) The red light camera (RLC) program commenced in July 1988, with five cameras operating at 15 sites in metropolitan Adelaide. This report deals with the first eighteen months of operation, to December 1989. A number of recommendations have been made… PROGRAM EVALUATION … In 1989 dollars, the program was estimated to have achieved an accident reduction benefit of $1.4m in the first 12 months of operation, which is almost twice the benefit expected using the assumptions made when selecting the sites. (There are 8 recommendations, mostly specific to the particular program characteristics)
Resumo:
Red light cameras were introduced in August 1983 to deter run-the-red offences and therefore to reduce the incidence of right-angle accidents at signalised intersections in Melbourne. This report was prepared after two years of operation of the program. It provides a detailed account of the technical aspects of the program, but does not provide any detailed, evaluative analyses of accident data.
Resumo:
Light gauge steel frame (LSF) wall systems are increasingly used in residential and commercial buildings as load bearing and non-load bearing elements. Conventionally, the fire resistance ratings of such building elements are determined using approximate prescriptive methods based on limited standard fire tests. However, recent studies have shown that in some instances real building fire time-temperature curves could be more severe than the standard fire curve, in terms of maximum temperature and rate of temperature rise. This has caused problems for safe evacuation and rescue activities, and in some instances has also lead to the collapse of buildings earlier than the prescribed fire resistance. Therefore a detailed research study into the performance of LSF wall systems under both standard fire and realistic fire conditions was undertaken using full scale fire tests to understand the fire performance of different LSF wall configurations. Both load bearing and non-load bearing full scale fire tests were performed on LSF walls configurations which included single layer, double layer, externally insulated wall panels made up of different steel sections and thicknesses of gypsum plasterboards. The non-load bearing fire test results were utilized to understand the factors affecting the fire resistance of LSF walls, while loading bearing fire test results led to development of simplified methods to predict the fire resistance ratings of load bearing LSF walls exposed to both standard and realistic design fires. This paper presents the results of full scale experimental study and highlights the effects of standard and realistic fire conditions on fire performance of LSF walls.
Resumo:
For the first time, the conversion of crystalline cellulose to valuable chemicals was enhanced by visible-light irradiation using zeolite-based gold nanoparticles (Au-NPs). This plasmon-enhanced photocatalytic conversion significantly improved processing efficiency and achieved a high yield of 60% at relatively low temperature. Moreover, the photocatalytic properties of the photocatalysts varied with the light intensity and the irradiation wavelength.
Resumo:
Visual problems may be the first symptoms of diabetes. There have been several reports of transient changes in refraction of people newly diagnosed with diabetes. Visual acuity and refraction may be affected when there are ocular biometric changes. Small but significant biometrical changes have been found by some authors during hyperglycaemia and during reduction of hyperglycaemia.[4] Here, we describe a case of type 2 diabetes that was detected from ocular straylight and intraocular thickness measurements...
Resumo:
Inspired by high porosity, absorbency, wettability and hierarchical ordering on the micrometer and nanometer scale of cotton fabrics, a facile strategy is developed to coat visible light active metal nanostructures of copper and silver on cotton fabric substrates. The fabrication of nanostructured Ag and Cu onto interwoven threads of a cotton fabric by electroless deposition creates metal nanostructures that show a localized surface plasmon resonance (LSPR) effect. The micro/nanoscale hierarchical ordering of the cotton fabrics allows access to catalytically active sites to participate in heterogeneous catalysis with high efficiency. The ability of metals to absorb visible light through LSPR further enhances the catalytic reaction rates under photoexcitation conditions. Understanding the mode of electron transfer during visible light illumination in Ag@Cotton and Cu@Cotton through electrochemical measurements provides mechanistic evidence on the influence of light in promoting electron transfer during heterogeneous catalysis for the first time. The outcomes presented in this work will be helpful in designing new multifunctional fabrics with the ability to absorb visible light and thereby enhance light-activated catalytic processes.
Resumo:
In the study, we used the Agilent 8453 spectrophotometer (which is equipped with a limiting aperture that restricts the light beam to the central 5 mm of the contact lens), to measure the transmittance of various coloured contact lenses including the one Day Acuvue define manufactured by Johnson and Johnson which the authors represent. We measured the instrument baseline before the transmittance spectra of lenses were tested. The values of lens transmittances were thus the difference between baseline and lens measurement at each time. The transmittance measurements were obtained at 0.5 nm intervals, from 200 to 700 nm after a soak in saline to remove the influence of any surface active agents within the packaging products. The technique used in our study was not very different from how other research studies [2], [3], [4], [5] and [6] have measured the spectra transmittances of contact lenses...
Resumo:
PURPOSE The purpose of this study was to examine the relationship between objectively measured ambient light exposure and longitudinal changes in axial eye growth in childhood. METHODS A total of 101 children (41 myopes and 60 nonmyopes), 10 to 15 years of age participated in this prospective longitudinal observational study. Axial eye growth was determined from measurements of ocular optical biometry collected at four study visits over an 18-month period. Each child’s mean daily light exposure was derived from two periods (each 14 days long) of objective light exposure measurements from a wrist-worn light sensor. RESULTS Over the 18-month study period, a modest but statistically significant association between greater average daily light exposure and slower axial eye growth was observed (P ¼ 0.047). Other significant predictors of axial eye growth in this population included children’s refractive error group (P < 0.001), sex (P < 0.01), and age (P < 0.001). Categorized according to their objectively measured average daily light exposure and adjusting for potential confounders (age, sex, baseline axial length, parental myopia, nearwork, and physical activity), children experiencing low average daily light exposure (mean daily light exposure: 459 6 117 lux, annual eye growth: 0.13 mm/y) exhibited significantly greater eye growth than children experiencing moderate (842 6 109 lux, 0.060 mm/y), and high (1455 6 317 lux, 0.065 mm/y) average daily light exposure levels (P ¼ 0.01). CONCLUSIONS In this population of children, greater daily light exposure was associated with less axial eye growth over an 18-month period. These findings support the role of light exposure in the documented association between time spent outdoors and childhood myopia.
Resumo:
• Although there is evidence that outdoor activity is an important factor involved in the development of childhood refractive error,1,2 the mechanism underlying the association between more outdoor activity and less myopia in childhood is not clear. • In this prospective longitudinal study, the relationship between objectively measured ambient light exposure and eye growth in childhood was examined.
Resumo:
Finely control of product selectivity is an essential issue in organic chemical production. In the synthesis of functionalized anilines via reduction of the corresponding nitroarenes, the challenge is to selectively reduce only the nitro group in the presence of other reducible functional groups in nitroarene molecules at a high reaction rate. Normally, the nitroarene is reduced stepwise through a series of intermediates that remain as byproducts, increasing the aniline synthesis cost. Here we report that alloying small amounts of copper into gold nanoparticles can alter the reaction pathway of the catalytic reduction under visible-light irradiation at ambient temperature, allowing nitroaromatics to be transformed directly to anilines in a highly selective manner. The reasons for the high efficiency of the photocatalytic reduction under these comparatively benign conditions as well as the light-excited reaction mechanisms are discussed. This photocatalytic process avoids byproducts, exhibits a high reaction rate and excellent substituent tolerance, and can be used for the synthesis of many useful functionalized anilines under environmentally benign conditions. Switching of the reaction pathway simply by tailoring the bimetallic alloy NPs of the photocatalysts is effective for engineering of product chemoselectivity.
Resumo:
Metal-free CNTs exhibit high activity (conversion rate 99.6%, 6 h) towards the synthesis of chiral hydrobenzoin from benzaldehyde under near-UV light irradiation (320–400 nm). The CNT structure before and after the reaction, the interaction between the molecule and the CNT surface, the intermediate products, the substitution effect and the influence of light on the reaction were examined using various techniques. A photo-excited conduction electron transfer (PECET) mechanism for the photocatalytic reduction using CNTs has been proposed. This finding provides a green photocatalytic route for the production of hydrobenzoin and highlights a potential photocatalytic application of CNTs.
Resumo:
Multi-agent systems implicate a high degree of concurrency at both the Inter- and Intra-Agent levels. Scalable, fault tolerant, Agent Grooming Environment (SAGE), the second generation, FIPA compliant MAS requires a built in mechanism to achieve both the Inter- and Intra-Agent concurrency. This paper dilates upon an attempt to provide a reliable, efficient and light-weight solution to provide intra-agent concurrency with-in the internal agent architecture of SAGE. It addresses the issues related to using the JAVA threading model to provide this level of concurrency to the agent and provides an alternative approach that is based on an eventdriven, concurrent and user-scalable multi-tasking model for the agent's internal model. The findings of this paper show that our proposed approach is suitable for providing an efficient and lightweight concurrent task model for SA GE and considerably outweighs the performance of multithreaded tasking model based on JAVA in terms of throughput and efficiency. This has been illustrated using the practical implementation and evaluation of both models. © 2004 IEEE.