158 resultados para LARGE SYSTEMS
Resumo:
The identification of safety hazards and risks and their associated control measures provides the foundation for any safety program and essentially determines the scope, content and complexity of an effective occupational health and safety management system. In the case of work-related road safety (WRRS), there is a gap within current knowledge, research and practice regarding the holistic assessment of WRRS safety systems and practice. In order to mitigate this gap, a multi-level process tool for assessing WRRS safety systems was developed from extensive consultation, practice and informed by theoretical models and frameworks. Data collection for the Organisational Driving Safety Systems Analysis (ODSSA) tool utilised a case study methodology and included multiple information sources: such as documents, archival records, interviews, direct observations, participant observations, and physical artefacts. Previous trials and application of the ODSSA has indicated that the tool is applicable to a wide range of organisational fleet environments and settings. This paper reports on the research results and effectiveness of the ODSSA tool to assess WRRS systems across a large organisation that recently underwent considerable organisational change, including amalgamation of multiple organisations. The outcomes of this project identified considerable differences in the degree by which the organisation addressed WRRS across their vehicle fleet operations and provided guidelines for improving organisations’ WRRS systems. The ODSSA tool was pivotal in determining WRRS system deficiencies and provided a platform to inform mitigation and improvement strategies.
Resumo:
Cooperative Intelligent Transportation Systems (C-ITS) allow in-vehicle systems, and ultimately the driver, to enhance their awareness of their surroundings by enabling communication between vehicles and road infrastructure. C-ITS are widely considered as the next major step in driving assistance systems, aiming at increasing safety, comfort and mobility for drivers. However, any communicating systems are subjected to security threats. A key component for providing secure communications at a large scale is a Public Key Infrastructure (PKI). Due to the safety-critical nature of Vehicle-to-Vehicle (V2V) communications, a C-ITS PKI has functional, performance and scalability requirements that differ from traditional non-automotive environments. This paper identifies and defines the key functional and security requirements for C-ITS PKI systems and analyses proposed C-ITS PKI standards against these requirements. In particular, the proposed US and European C-ITS PKI systems are identified as being too complex and not scalable. The paper also highlights various privacy, security and scalability concerns that should be considered for a secure C-ITS PKI solution in the Australian transport landscape.
Resumo:
Large integration of solar Photo Voltaic (PV) in distribution network has resulted in over-voltage problems. Several control techniques are developed to address over-voltage problem using Deterministic Load Flow (DLF). However, intermittent characteristics of PV generation require Probabilistic Load Flow (PLF) to introduce variability in analysis that is ignored in DLF. The traditional PLF techniques are not suitable for distribution systems and suffer from several drawbacks such as computational burden (Monte Carlo, Conventional convolution), sensitive accuracy with the complexity of system (point estimation method), requirement of necessary linearization (multi-linear simulation) and convergence problem (Gram–Charlier expansion, Cornish Fisher expansion). In this research, Latin Hypercube Sampling with Cholesky Decomposition (LHS-CD) is used to quantify the over-voltage issues with and without the voltage control algorithm in the distribution network with active generation. LHS technique is verified with a test network and real system from an Australian distribution network service provider. Accuracy and computational burden of simulated results are also compared with Monte Carlo simulations.
Resumo:
This research examined the implementation of clinical information system technology in a large Saudi Arabian health care organisation. The research was underpinned by symbolic interactionism and grounded theory methods informed data collection and analysis. Observations, a review of policy documents and 38 interviews with registered nurses produced in-depth data. Analysis generated three abstracted concepts that explained how imported technology increased practice and health care complexity rather than enhance quality patient care. The core category, Disseminating Change, also depicted a hierarchical and patriarchal culture that shaped the implementation process at the levels of government, organisation and the individual.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
Solving large-scale all-to-all comparison problems using distributed computing is increasingly significant for various applications. Previous efforts to implement distributed all-to-all comparison frameworks have treated the two phases of data distribution and comparison task scheduling separately. This leads to high storage demands as well as poor data locality for the comparison tasks, thus creating a need to redistribute the data at runtime. Furthermore, most previous methods have been developed for homogeneous computing environments, so their overall performance is degraded even further when they are used in heterogeneous distributed systems. To tackle these challenges, this paper presents a data-aware task scheduling approach for solving all-to-all comparison problems in heterogeneous distributed systems. The approach formulates the requirements for data distribution and comparison task scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic implementation to solve the problem. The approach provides perfect data locality for all comparison tasks, avoiding rearrangement of data at runtime. It achieves load balancing among heterogeneous computing nodes, thus enhancing the overall computation time. It also reduces data storage requirements across the network. The effectiveness of the approach is demonstrated through experimental studies.
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.
Resumo:
We have come a long way from simple straw and balloon models of magma plumbing systems to a more detailed picture of shallow level intrusive complexes. In this chapter, the sub-volcanic plumbing system is considered in terms of how we can define the types and styles of magma networks from the deep to the shallow subsurface. We look at the plumbing system from large igneous provinces, through rifted systems to polygenetic volcanoes, with a view to characterising some of the key conceptual models. There is a focus on how ancient magmatic centres can help us better understand magmatic plumbing. New innovative ways to consider and quantify magma plumbing are also highlighted including 3D seismic, and using the crystal cargo to help fingerprint key magma plumbing events. Conclusions are drawn to our understanding of the 3D plumbing system and how these recent advances can be helpful when exploring the other chapters of this contribution.