453 resultados para Iterative Methods


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This article reports on a culturally appropriate process of development of a smoke-free workplace policy within the peak Aboriginal Controlled Community Health Organisation in Victoria, Australia. Smoking is acknowledged as being responsible for at least 20% of all deaths in Aboriginal communities in Australia, and many Aboriginal health workers smoke. Methods: The smoke-free workplace policy was developed using the iterative, discursive and experience-based methodology of Participatory Action Research, combined with the culturally embedded concept of ‘having a yarn’. Results: Staff members initially identified smoking as a topic to be avoided within workplace discussions. This was due, in part, to grief (everyone had suffered a smoking related bereavement). Further, there was anxiety that discussing smoking would result in culturally difficult conflict. The use of yarning opened up a safe space for discussion and debate,enabling development of a policy that was accepted across the organisation. Conclusions: Within Aboriginal organisations, it is not sufficient to focus on the outcomes of policy development. Rather, due attention must be paid to the process employed in development of policy, particularly when that policy is directly related to an emotionally and communally weighted topic such as smoking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a modification of a class of stochastic Runge–Kutta methods proposed in a paper by Komori (2007). The slight modification can reduce the computational costs of the methods significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, development of Unmanned Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This thesis presents an investigation of methods for increasing the energy efficiency on UAVs. One method is via the development of a Mission Waypoint Optimisation (MWO) procedure for a small fixed-wing UAV, focusing on improving the onboard fuel economy. MWO deals with a pre-specified set of waypoints by modifying the given waypoints within certain limits to achieve its optimisation objectives of minimising/maximising specific parameters. A simulation model of a UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. This simulation model was separately integrated with a multi-objective Evolutionary Algorithm (MOEA) optimiser and a Sequential Quadratic Programming (SQP) solver to perform single-objective and multi-objective optimisation procedures of a set of real-world waypoints in order to minimise the onboard fuel consumption. The results of both procedures show potential in reducing fuel consumption on a UAV in a ight mission. Additionally, a parallel Hybrid-Electric Propulsion System (HEPS) on a small fixedwing UAV incorporating an Ideal Operating Line (IOL) control strategy was developed. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine was determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the impact of utilising a Decision Support System (DSS) in a practical health planning study. Specifically, it presents a real-world case of a community-based initiative aiming to improve overall public health outcomes. Previous studies have emphasised that because of a lack of effective information, systems and an absence of frameworks for making informed decisions in health planning, it has become imperative to develop innovative approaches and methods in health planning practice. Online Geographical Information Systems (GIS) has been suggested as one of the innovative methods that will inform decision-makers and improve the overall health planning process. However, a number of gaps in knowledge have been identified within health planning practice: lack of methods to develop these tools in a collaborative manner; lack of capacity to use the GIS application among health decision-makers perspectives, and lack of understanding about the potential impact of such systems on users. This study addresses the abovementioned gaps and introduces an online GIS-based Health Decision Support System (HDSS), which has been developed to improve collaborative health planning in the Logan-Beaudesert region of Queensland, Australia. The study demonstrates a participatory and iterative approach undertaken to design and develop the HDSS. It then explores the perceived user satisfaction and impact of the tool on a selected group of health decision makers. Finally, it illustrates how decision-making processes have changed since its implementation. The overall findings suggest that the online GIS-based HDSS is an effective tool, which has the potential to play an important role in the future in terms of improving local community health planning practice. However, the findings also indicate that decision-making processes are not merely informed by using the HDSS tool. Instead, they seem to enhance the overall sense of collaboration in health planning practice. Thus, to support the Healthy Cities approach, communities will need to encourage decision-making based on the use of evidence, participation and consensus, which subsequently transfers into informed actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adults diagnosed with primary brain tumours often experience physical, cognitive and neuropsychiatric impairments and decline in quality of life. Although disease and treatment-related information is commonly provided to cancer patients and carers, newly diagnosed brain tumour patients and their carers report unmet information needs. Few interventions have been designed or proven to address these information needs. Accordingly, a three-study research program, that incorporated both qualitative and quantitative research methods, was designed to: 1) identify and select an intervention to improve the provision of information, and meet the needs of patients with a brain tumour; 2) use an evidence-based approach to establish the content, language and format for the intervention; and 3) assess the acceptability of the intervention, and the feasibility of evaluation, with newly diagnosed brain tumour patients. Study 1: Structured concept mapping techniques were undertaken with 30 health professionals, who identified strategies or items for improving care, and rated each of 42 items for importance, feasibility, and the extent to which such care was provided. Participants also provided data to interpret the relationship between items, which were translated into ‘maps’ of relationships between information and other aspects of health care using multidimensional scaling and hierarchical cluster analysis. Results were discussed by participants in small groups and individual interviews to understand the ratings, and facilitators and barriers to implementation. A care coordinator was rated as the most important strategy by health professionals. Two items directly related to information provision were also seen as highly important: "information to enable the patient or carer to ask questions" and "for doctors to encourage patients to ask questions". Qualitative analyses revealed that information provision was individualised, depending on patients’ information needs and preferences, demographic variables and distress, the characteristics of health professionals who provide information, the relationship between the individual patient and health professional, and influenced by the fragmented nature of the health care system. Based on quantitative and qualitative findings, a brain tumour specific question prompt list (QPL) was chosen for development and feasibility testing. A QPL consists of a list of questions that patients and carers may want to ask their doctors. It is designed to encourage the asking of questions in the medical consultation, allowing patients to control the content, and amount of information provided by health professionals. Study 2: The initial structure and content of the brain tumour specific QPL developed was based upon thematic analyses of 1) patient materials for brain tumour patients, 2) QPLs designed for other patient populations, and 3) clinical practice guidelines for the psychosocial care of glioma patients. An iterative process of review and refinement of content was undertaken via telephone interviews with a convenience sample of 18 patients and/or carers. Successive drafts of QPLs were sent to patients and carers and changes made until no new topics or suggestions arose in four successive interviews (saturation). Once QPL content was established, readability analyses and redrafting were conducted to achieve a sixth-grade reading level. The draft QPL was also reviewed by eight health professionals, and shortened and modified based on their feedback. Professional design of the QPL was conducted and sent to patients and carers for further review. The final QPL contained questions in seven colour-coded sections: 1) diagnosis; 2) prognosis; 3) symptoms and problems; 4) treatment; 5) support; 6) after treatment finishes; and 7) the health professional team. Study 3: A feasibility study was conducted to determine the acceptability of the QPL and the appropriateness of methods, to inform a potential future randomised trial to evaluate its effectiveness. A pre-test post-test design was used with a nonrandomised control group. The control group was provided with ‘standard information’, the intervention group with ‘standard information’ plus the QPL. The primary outcome measure was acceptability of the QPL to participants. Twenty patients from four hospitals were recruited a median of 1 month (range 0-46 months) after diagnosis, and 17 completed baseline and follow-up interviews. Six participants would have preferred to receive the information booklet (standard information or QPL) at a different time, most commonly at diagnosis. Seven participants reported on the acceptability of the QPL: all said that the QPL was helpful, and that it contained questions that were useful to them; six said it made it easier to ask questions. Compared with control group participants’ ratings of ‘standard information’, QPL group participants’ views of the QPL were more positive; the QPL had been read more times, was less likely to be reported as ‘overwhelming’ to read, and was more likely to prompt participants to ask questions of their health professionals. The results from the three studies of this research program add to the body of literature on information provision for brain tumour patients. Together, these studies suggest that a QPL may be appropriate for the neuro-oncology setting and acceptable to patients. The QPL aims to assist patients to express their information needs, enabling health professionals to better provide the type and amount of information that patients need to prepare for treatment and the future. This may help health professionals meet the challenge of giving patients sufficient information, without providing ‘too much’ or ‘unnecessary’ information, or taking away hope. Future studies with rigorous designs are now needed to determine the effectiveness of the QPL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.