293 resultados para Intelligent alarm processing
Resumo:
Niklas Luhmann's theory of social systems has been widely influential in the German-speaking countries in the past few decades. However, despite its significance, particularly for organization studies, it is only very recently that Luhmann's work has attracted attention on the international stage as well. This Special Issue is in response to that. In this introductory paper, we provide a systematic overview of Luhmann's theory. Reading his work as a theory about distinction generating and processing systems, we especially highlight the following aspects: (i) Organizations are processes that come into being by permanently constructing and reconstructing themselves by means of using distinctions, which mark what is part of their realm and what not. (ii) Such an organizational process belongs to a social sphere sui generis possessing its own logic, which cannot be traced back to human actors or subjects. (iii) Organizations are a specific kind of social process characterized by a specific kind of distinction: decision, which makes up what is specifically organizational about organizations as social phenomena. We conclude by introducing the papers in this Special Issue. Copyright © 2006 SAGE.
Resumo:
In Chapter 10, Adam and Dougherty describe the application of medical image processing to the assessment and treatment of spinal deformity, with a focus on the surgical treatment of idiopathic scoliosis. The natural history of spinal deformity and current approaches to surgical and non-surgical treatment are briefly described, followed by an overview of current clinically used imaging modalities. The key metrics currently used to assess the severity and progression of spinal deformities from medical images are presented, followed by a discussion of the errors and uncertainties involved in manual measurements. This provides the context for an analysis of automated and semi-automated image processing approaches to measure spinal curve shape and severity in two and three dimensions.
Resumo:
The primary objective of the experiments reported here was to demonstrate the effects of opening up the design envelope for auditory alarms on the ability of people to learn the meanings of a set of alarms. Two sets of alarms were tested, one already extant and one newly-designed set for the same set of functions, designed according to a rationale set out by the authors aimed at increasing the heterogeneity of the alarm set and incorporating some well-established principles of alarm design. For both sets of alarms, a similarity-rating experiment was followed by a learning experiment. The results showed that the newly-designed set was judged to be more internally dissimilar, and easier to learn, than the extant set. The design rationale outlined in the paper is useful for design purposes in a variety of practical domains and shows how alarm designers, even at a relatively late stage in the design process, can improve the efficacy of an alarm set.
Resumo:
The present study used ERPs to compare processing of fear-relevant (FR) animals (snakes and spiders) and non-fear-relevant (NFR) animals similar in appearance (worms and beetles). EEG was recorded from 18 undergraduate participants (10 females) as they completed two animal-viewing tasks that required simple categorization decisions. Participants were divided on a post hoc basis into low snake/spider fear and high snake/spider fear groups. Overall, FR animals were rated higher on fear and elicited a larger LPC. However, individual differences qualified these effects. Participants in the low fear group showed clear differentiation between FR and NFR animals on subjective ratings of fear and LPC modulation. In contrast, participants in the high fear group did not show such differentiation between FR and NFR animals. These findings suggest that the salience of feared-FR animals may generalize on both a behavioural and electro-cortical level to other animals of similar appearance but of a non-harmful nature.
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.
Resumo:
Background When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB. Methodology/Principal Findings The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB. Conclusions/Significance Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection.
Resumo:
This paper describes a new system, dubbed Continuous Appearance-based Trajectory Simultaneous Localisation and Mapping (CAT-SLAM), which augments sequential appearance-based place recognition with local metric pose filtering to improve the frequency and reliability of appearance-based loop closure. As in other approaches to appearance-based mapping, loop closure is performed without calculating global feature geometry or performing 3D map construction. Loop-closure filtering uses a probabilistic distribution of possible loop closures along the robot’s previous trajectory, which is represented by a linked list of previously visited locations linked by odometric information. Sequential appearance-based place recognition and local metric pose filtering are evaluated simultaneously using a Rao–Blackwellised particle filter, which weights particles based on appearance matching over sequential frames and the similarity of robot motion along the trajectory. The particle filter explicitly models both the likelihood of revisiting previous locations and exploring new locations. A modified resampling scheme counters particle deprivation and allows loop-closure updates to be performed in constant time for a given environment. We compare the performance of CAT-SLAM with FAB-MAP (a state-of-the-art appearance-only SLAM algorithm) using multiple real-world datasets, demonstrating an increase in the number of correct loop closures detected by CAT-SLAM.
Resumo:
Using Gray and McNaughton’s (2000) revised Reinforcement Sensitivity Theory (r-RST), we examined the influence of personality on processing of words presented in gain-framed and loss-framed anti-speeding messages and how the processing biases associated with personality influenced message acceptance. The r-RST predicts that the nervous system regulates personality and that behaviour is dependent upon the activation of the Behavioural Activation System (BAS), activated by reward cues and the Fight-Flight-Freeze System (FFFS), activated by punishment cues. According to r-RST, individuals differ in the sensitivities of their BAS and FFFS (i.e., weak to strong), which in turn leads to stable patterns of behaviour in the presence of rewards and punishments, respectively. It was hypothesised that individual differences in personality (i.e., strength of the BAS and the FFFS) would influence the degree of both message processing (as measured by reaction time to previously viewed message words) and message acceptance (measured three ways by perceived message effectiveness, behavioural intentions, and attitudes). Specifically, it was anticipated that, individuals with a stronger BAS would process the words presented in the gain-frame messages faster than those with a weaker BAS and individuals with a stronger FFFS would process the words presented in the loss-frame messages faster than those with a weaker FFFS. Further, it was expected that greater processing (faster reaction times) would be associated with greater acceptance for that message. Driver licence holding students (N = 108) were recruited to view one of four anti-speeding messages (i.e., social gain-frame, social loss-frame, physical gain-frame, and physical loss-frame). A computerised lexical decision task assessed participants’ subsequent reaction times to message words, as an indicator of the extent of processing of the previously viewed message. Self-report measures assessed personality and the three message acceptance measures. As predicted, the degree of initial processing of the content of the social gain-framed message mediated the relationship between the reward sensitive trait and message effectiveness. Initial processing of the physical loss-framed message partially mediated the relationship between the punishment sensitive trait and both message effectiveness and behavioural intention ratings. These results show that reward sensitivity and punishment sensitivity traits influence cognitive processing of gain-framed and loss-framed message content, respectively, and subsequently, message effectiveness and behavioural intention ratings. Specifically, a range of road safety messages (i.e., gain-frame and loss-frame messages) could be designed which align with the processing biases associated with personality and which would target those individuals who are sensitive to rewards and those who are sensitive to punishments.
Resumo:
A wireless sensor network collected real-time water-quality measurements to investigate how current irrigation practices—in particular, underground water salination—affect the environment. New protocols provided high end-to-end packet delivery rates in the hostile deployment environment.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
This paper presents a survey of previously presented vision based aircraft detection flight test, and then presents new flight test results examining the impact of camera field-of view choice on the detection range and false alarm rate characteristics of a vision-based aircraft detection technique. Using data collected from approaching aircraft, we examine the impact of camera fieldof-view choice and confirm that, when aiming for similar levels of detection confidence, an improvement in detection range can be obtained by choosing a smaller effective field-of-view (in terms of degrees per pixel).
Resumo:
A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K.
Resumo:
For robots to use language effectively, they need to refer to combinations of existing concepts, as well as concepts that have been directly experienced. In this paper, we introduce the term generative grounding to refer to the establishment of shared meaning for concepts referred to using relational terms. We investigated a spatial domain, which is both experienced and constructed using mobile robots with cognitive maps. The robots, called Lingodroids, established lexicons for locations, distances, and directions through structured conversations called where-are-we, how-far, what-direction, and where-is-there conversations. Distributed concept construction methods were used to create flexible concepts, based on a data structure called a distributed lexicon table. The lexicon was extended from words for locations, termed toponyms, to words for the relational terms of distances and directions. New toponyms were then learned using these relational operators. Effective grounding was tested by using the new toponyms as targets for go-to games, in which the robots independently navigated to named locations. The studies demonstrate how meanings can be extended from grounding in shared physical experiences to grounding in constructed cognitive experiences, giving the robots a language that refers to their direct experiences, and to constructed worlds that are beyond the here-and-now.
Resumo:
In this paper we use a sequence-based visual localization algorithm to reveal surprising answers to the question, how much visual information is actually needed to conduct effective navigation? The algorithm actively searches for the best local image matches within a sliding window of short route segments or 'sub-routes', and matches sub-routes by searching for coherent sequences of local image matches. In contract to many existing techniques, the technique requires no pre-training or camera parameter calibration. We compare the algorithm's performance to the state-of-the-art FAB-MAP 2.0 algorithm on a 70 km benchmark dataset. Performance matches or exceeds the state of the art feature-based localization technique using images as small as 4 pixels, fields of view reduced by a factor of 250, and pixel bit depths reduced to 2 bits. We present further results demonstrating the system localizing in an office environment with near 100% precision using two 7 bit Lego light sensors, as well as using 16 and 32 pixel images from a motorbike race and a mountain rally car stage. By demonstrating how little image information is required to achieve localization along a route, we hope to stimulate future 'low fidelity' approaches to visual navigation that complement probabilistic feature-based techniques.
Resumo:
Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.