266 resultados para Inorganic chemistry|Chemical engineering|Materials science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein the mechanical properties of graphene, including Young’s modulus, fracture stress and fracture strain have been investigated by molecular dynamics simulations. The simulation results show that the mechanical properties of graphene are sensitive to the temperature changes but insensitive to the layer numbers in the multilayer graphene. Increasing temperature exerts adverse and significant effects on the mechanical properties of graphene. However, the adverse effect produced by the increasing layer number is marginal. On the other hand, isotope substitutions in graphene play a negligible role in modifying the mechanical properties of graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale sugarcane bagasse storage in uncovered stockpiles has the potential to result in adverse impacts on the environment and surrounding communities through hazards associated with nuisance dust, groundwater seepage, spontaneous combustion and generation of contaminated leachates. Managing these hazards will assist in improved health and safety outcomes for factory staff and reduced potential environmental impacts on surrounding communities. Removal of the smaller fibres (pith) from bagasse prior to stockpiling reduced the dust number of bagasse by 50% and modelling suggests peak ground level PM10 dust emissions would reduce by 70%. Depithed bagasse has much lower water holding capacity (~43%) than whole bagasse. This experimental and modelling study investigated the physical properties of depithed and whole bagasse. Dust dispersion modelling was undertaken to determine the likely effects associated with storage of whole and depithed sugarcane bagasse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the effect of catalyst preparation and additive precursors on the catalytic decomposition of biomass using palygorskite-supported Fe and Ni catalysts was investigated. The catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is concluded that the most active additive precursor was Fe(NO3)3·9H2O. As for the catalyst preparation method, co-precipitation had superiority over incipient wetness impregnation at low Fe loadings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibrous scaffolds of engineered structures can be chosen as promising porous environments when an approved criterion validates their applicability for a specific medical purpose. For such biomaterials, this paper sought to investigate various structural characteristics in order to determine whether they are appropriate descriptors. A number of poly(3-hydroxybutyrate) scaffolds were electrospun; each of which possessed a distinguished architecture when their material and processing conditions were altered. Subsequent culture of mouse fibroblast cells (L929) was carried out to evaluate the cells viability on each scaffold after their attachment for 24 h and proliferation for 48 and 72 h. The scaffolds’ porosity, pores number, pores size and distribution were quantified and none could establish a relationship with the viability results. Virtual reconstruction of the mats introduced an authentic criterion, “Scaffold Percolative Efficiency” (SPE), with which the above descriptors were addressed collectively. It was hypothesized to be able to quantify the efficacy of fibrous scaffolds by considering the integration of porosity and interconnectivity of the pores. There was a correlation of 80% as a good agreement between the SPE values and the spectrophotometer absorbance of viable cells; a viability of more than 350% in comparison to that of the controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). Recently, a new profluorescent nitroxide molecular probe (BPEAnit) developed at QUT was applied in an entirely novel, rapid and non-cell based assay for assessing the oxidative potential of particles (i.e. potential of particles to induce oxidative stress). The technique was applied on particles produced by several combustion sources, namely cigarette smoke, diesel exhaust and wood smoke. One of the main findings from the initial studies undertaken at QUT was that the oxidative potential per PM mass significantly varies for different combustion sources as well as the type of fuel used and combustion conditions. However, possibly the most important finding from our studies was that there was a strong correlation between the organic fraction of particles and the oxidative potential measured by the PFN assay, which clearly highlights the importance of organic species in particle-induced toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges can exhibit non-flat morphologies due to pre-existing edge stress. Using molecular dynamics (MD) simulations, we investigate the free-edge effect on the shape transition in GNRs with different edge types, including regular (armchair and zigzag), armchair terminated with hydrogen and reconstructed armchair. The results show that initial edge stress and energy are dependent on the edge configurations. It is confirmed that pre-strain on the free edges is a possible way to limit the random shape transition of GNRs. In addition, the influence of surface attachment on the shape transition is also investigated in this work. It is found that surface attachment can lead to periodic ripples in GNRs, dependent on the initial edge configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 μm c.f. 122 μm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free bleaching (QPP), although none achieved a satisfactory brightness level and more optimisation is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans have altered environments and enhanced their wellbeing unlike any other creature on the planet (Hielman & Donda, 2007); this is no different whether the environment is ecological, social or organizational. In recent times, the debate regarding greenhouse effects on the global weather patterns and the sustainment of the earth’s temperature necessary for life support has become quite infamously problematic as society pushes to find new sources of energy both renewable and environmentally sustainable. The feedback received on CSG from both government and companies alike is that the opportunities this industry creates has a lasting range of social and economic benefits worth over fifty (50) billion dollars in projects (Queensland Government, 2013). This however, has been overshadowed by social activist and lobbyist groups as ‘Lock the Gate Alliance’ saying, as one part of their report noted from the National Water Commission, “coal seam gas development could cause significant social impacts by disrupting current land-use practices and the local environment through infrastructure construction and access” (Lock the Gate Alliance, n.d.), and “In recent years both a NSW and Federal Senate inquiry into coal seam gas production were deliberately mislead by an organization that claims to work on behalf of the farming community, This is the battle for the end of the fossil fuel industry. This is the end game..." (Ward, 2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an overview of the results of a collaborative research project titled "A model for research supervision of international students in engineering and information technology disciplines". This project aimed to identify factors influencing the success of culturally and linguistically diverse (CALD) higher degree research (HDR) students in the fields of Engineering and Information Technology at three Australian Universities: Queensland University of Technology, The University of Western Australia and Curtin University.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles computational studies indicate that (B, N, or O)-doped graphene ribbon edges can substantially reduce the energy barrier for H2 dissociative adsorption. The low barrier is competitive with many widely used metal or metal oxide catalysts. This suggests that suitably functionalized graphene architectures are promising metal-free alternatives for low-cost catalytic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numbers of diesel engines in both stationary and mobile applications are increasing nowadays. Diesel engines emit lower Hydrocarbon (HC) and Carbon monoxide (CO) than gasoline engines. However, they can produce more nitrogen oxides (NOx) and have higher particulate matter (PM). On the other hand, emissions standards are getting stringent day by day due to considerable concerns about unregulated pollutants and particularly ultrafine particles deleterious effect on human health. Non-thermal plasma (NTP) treatment of exhaust gas is known as a promising technology for both NOx and PM reduction by introducing plasma inside the exhaust gas. Vehicle exhaust gases undergo chemical changes when exposed to plasma. In this study, the PM removal mechanism using NTP by applying high voltage pulses of up to 20 kVpp with a repetition rate of 10 kHz are investigated. It is found that, voltage increase not necessarily has a positive effect on PM removal in diesel engine emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures and thermodynamic properties of methyl derivatives of ammonia–borane (BH3NH3, AB) have been studied with the frameworks of density functional theory and second-order Møller–Plesset perturbation theory. It is found that, with respect to pure AB, methyl ammonia–boranes show higher complexation energies and lower reaction enthalpies for the release of H2, together with a slight increment of the activation barrier. These results indicate that the methyl substitution can enhance the reversibility of the system and prevent the formation of BH3/NH3, but no enhancement of the release rate of H2 can be expected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Electronic Portal Imaging Devices (EPIDs) are available with most linear accelerators (Amonuk, 2002), the current technology being amorphous silicon flat panel imagers. EPIDs are currently used routinely in patient positioning before radiotherapy treatments. There has been an increasing interest in using EPID technology tor dosimetric verification of radiotherapy treatments (van Elmpt, 2008). A straightforward technique involves the EPID panel being used to measure the fluence exiting the patient during a treatment which is then compared to a prediction of the fluence based on the treatment plan. However, there are a number of significant limitations which exist in this Method: Resulting in a limited proliferation ot this technique in a clinical environment. In this paper, we aim to present a technique of simulating IMRT fields using Monte Carlo to predict the dose in an EPID which can then be compared to the measured dose in the EPID. Materials: Measurements were made using an iView GT flat panel a-SI EPfD mounted on an Elekta Synergy linear accelerator. The images from the EPID were acquired using the XIS software (Heimann Imaging Systems). Monte Carlo simulations were performed using the BEAMnrc and DOSXVZnrc user codes. The IMRT fieids to be delivered were taken from the treatment planning system in DICOMRT format and converted into BEAMnrc and DOSXYZnrc input files using an in-house application (Crowe, 2009). Additionally. all image processing and analysis was performed using another in-house application written using the Interactive Data Language (IDL) (In Visual Information Systems). Comparison between the measured and Monte Carlo EPID images was performed using a gamma analysis (Low, 1998) incorporating dose and distance to agreement criteria. Results: The fluence maps recorded by the EPID were found to provide good agreement between measured and simulated data. Figure 1 shows an example of measured and simulated IMRT dose images and profiles in the x and y directions. "A technique for the quantitative evaluation of dose distributions", Med Phys, 25(5) May 1998 S. Crowe, 1. Kairn, A. Fielding, "The Development of a Monte Carlo system to verify Radiotherapy treatment dose calculations", Radiotherapy & Oncology, Volume 92, Supplement 1, August 2009, Pages S71-S71.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by the wonderful properties of some biological composites in nature, we performed molecular dynamics simulations to investigate the mechanical behavior of bicontinuous nanocomposites. Three representative types of bicontinuous composites, which have regular network, random network, and nacre inspired microstructures respectively, were studied and the results were compared with those of a honeycomb nanocomposite with only one continuous phase. It was found that the mechanical strength of nanocomposites in a given direction strongly depends on the connectivity of microstructure in that direction. Directional isotropy in mechanical strength and easy manufacturability favor the random network nanocomposites as a potentially great bioinspired composite with balanced performances. In addition, the tensile strength of random network nanocomposites is less sensitive to the interfacial failure, owing to its super high interface-to-volume ratio and random distribution of internal interfaces. The results provide a useful guideline for design and optimization of advanced nanocomposites with superior mechanical properties.