250 resultados para Heat Strain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations of thermomagnetic convection of paramagnetic fluids placed in a micro-gravity condition (g ≈ 0) and under a uniform vertical gradient magnetic field in an open ended square enclosure with ramp heating temperature condition applied on a vertical wall is investigated in this study. In presence of the strong magnetic gradient field thermal convection of the paramagnetic fluid might take place even in a zero-gravity environment as a direct consequence of temperature differences occurring within the fluid. The thermal boundary layer develops adjacent to the hot wall as soon as the ramp temperature condition is applied on it. There are two scenarios can be observed based on the ramp heating time. The steady state of the thermal boundary layer can be reached before the ramp time is finished or vice versa. If the ramp time is larger than the quasi-steady time then the thermal boundary layer is in a quasi-steady mode with convection balancing conduction after the quasi-steady time. Further increase of the heat input simply accelerates the flow to maintain the proper thermal balance. Finally, the boundary layer becomes completely steady state when the ramp time is finished. Effects of magnetic Rayleigh number, Prandtl number and paramagnetic fluid parameter on the flow pattern and heat transfer are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stagnation-point total heat transfer was measured on a 1:27.7 model of the Flight Investigation of Reentry Environment II flight vehicle. Experiments were performed in the X1 expansion tube at an equivalent flight velocity and static enthalpy of 11 km/s and 12.7 MJ/kg, respectively. Conditions were chosen to replicate the flight condition at a total flight time of 1639.5 s, where radiation contributed an estimated 17-36% of the total heat transfer. This contribution is theorized to reduce to <2% in the scaled experiments, and the heating environment on the test model was expected to be dominated by convection. A correlation between reported flight heating rates and expected experimental heating, referred to as the reduced flight value, was developed to predict the level of heating expected on the test model. At the given flow conditions, the reduced flight value was calculated to be 150 MW/m2. Average stagnation-point total heat transfer was measured to be 140 ± 7% W/m2, showing good agreement with the predicted value. Experimentally measured heat transfer was found to have good agreement of between 5 and 15% with a number of convective heating correlations, confirming that convection dominates the tunnel heating environment, and that useful experimental measurements could be made in weakly coupled radiating flow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the property of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB; strain also induces an electronic phase transition between half-metal and metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain condition in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young children are thought to be particularly sensitive to heatwaves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children’s health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: “heatwave”, “heat wave”, “child health”, “morbidity”, “hospital admission”, “emergency department visit”, “family practice”, “primary health care”, “death” and “mortality”. Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children’s health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children’s health perspective, identifying the best measure of children’s exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children’s birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children’s disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiative and total heat transfer at the flow stagnation point of a 1:40.8 binary scaled model of the Titan Explorer vehicle were measured in the X3 expansion tube. Results from the current study illustrated that with the addition of CH4 into a N2 test gas radiative heat transfer could be detected. For a test gas of 5% CH4 and 95% N2, simulating an atmospheric model for Titanic aerocapture, approximately 4% of the experimentally measured total stagnation point heat transfer was found to be due to radiation. This was in comparison to < 1% measured for a test gas of pure nitrogen. When scaled to the flight vehicle, experimental results indicate a 64% contribution of radiation (test gas 5% CH4/95% N2). Previous numerical results however have predicted this contribution to be between 80-92%. Thus, experimental results from the current study suggest that numerical analyses are over-predicting the radiative heat transfer on the flight vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To assess the impact of exposure to ambient heat on urolithiasis among outdoor workers in a subtropical city of China. Methods: The 2003–2010 health check data of a shipbuilding company in Guangzhou, China were acquired. 190 cases and 760 matched controls were involved in this study. We assessed the relationship between exposure to ambient heat and urolithiasis for different occupations using conditional logistic regression. Results: Spray painters were most likely to develop urolithiasis (OR = 4.4; 95% CI: 1.7, 11.4), followed by smelter workers (OR = 4.0; 95% CI: 1.8, 9.2), welders (OR = 3.7; 95% CI: 1.9, 7.2), production security and quality inspectors (OR = 2.7; 95% CI: 1.4, 3.0), and assemblers (OR = 2.2; 95% CI: 1.1, 4.3). Overall, outdoor workers were more likely to present with urolithiasis compared with indoor employees (p b 0.05). In addition, workers with longer cumulative exposure time (OR = 1.5; 95% CI: 1.2, 1.8) and abnormal blood pressure (OR = 1.6; 95% CI: 1.0, 2.5) had higher risk for urolithiasis. Conclusions: Our findings demonstrate a significant association between exposure to ambient heat and urolithiasis among outdoor working populations. Public health intervention strategies should be developed to specifically target outdoor occupations.