163 resultados para Fully automated


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world is rich with information such as signage and maps to assist humans to navigate. We present a method to extract topological spatial information from a generic bitmap floor plan and build a topometric graph that can be used by a mobile robot for tasks such as path planning and guided exploration. The algorithm first detects and extracts text in an image of the floor plan. Using the locations of the extracted text, flood fill is used to find the rooms and hallways. Doors are found by matching SURF features and these form the connections between rooms, which are the edges of the topological graph. Our system is able to automatically detect doors and differentiate between hallways and rooms, which is important for effective navigation. We show that our method can extract a topometric graph from a floor plan and is robust against ambiguous cases most commonly seen in floor plans including elevators and stairwells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the results of an exploratory study that examined the problem of automating content analysis of student online discussion transcripts. We looked at the problem of coding discussion transcripts for the levels of cognitive presence, one of the three main constructs in the Community of Inquiry (CoI) model of distance education. Using Coh-Metrix and LIWC features, together with a set of custom features developed to capture discussion context, we developed a random forest classification system that achieved 70.3% classification accuracy and 0.63 Cohen's kappa, which is significantly higher than values reported in the previous studies. Besides improvement in classification accuracy, the developed system is also less sensitive to overfitting as it uses only 205 classification features, which is around 100 times less features than in similar systems based on bag-of-words features. We also provide an overview of the classification features most indicative of the different phases of cognitive presence that gives an additional insights into the nature of cognitive presence learning cycle. Overall, our results show great potential of the proposed approach, with an added benefit of providing further characterization of the cognitive presence coding scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I draw on four years of experience in mobility and transport research. I was part of a research project with Siemens, for which we identified global trends in urban mobility and explored future business opportunities through scenario planning methods. Some of the proposed solutions for personal and public transport included driverless vehicles. In collaboration with BMW Design I explored the potential of new materials for automotive user interfaces...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photography is now a highly automated activity where people enjoy phototaking by pointing and pressing a button. While this liberates people from having to interact with the processes of photography, e.g., controlling the parameters of the camera or printing images in the darkroom, we argue that an engagement with such processes can in fact enrich people's experience of phototaking. Drawing from fieldwork with members of a film-based photography club, we found that people who engage deeply with the various processes of phototaking experienced photography richly and meaningfully. Being able to participate fully in the entire process gave them a sense of achievement over the final result. Having the opportunity to engage with the process also allowed them to learn and hone their photographic skills. Through this understanding, we can imagine future technologies that enrich experiences of photography through providing the means to interact with photographic processes in new ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of pyridoxal-5´-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20 µL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was > 92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80 °C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic technique that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.