393 resultados para Flow control
Resumo:
We consider boundary layer flow of a micropolar fluid driven by a porous stretching sheet. A similarity solution is defined, and numerical solutions using Runge-Kutta and quasilinearisation schemes are obtained. A perturbation analysis is also used to derive analytic solutions to first order in the perturbing parameter. The resulting closed form solutions involve relatively complex expressions, and the analysis is made more tractable by a combination of offline and online work using a computational algebra system (CAS). For this combined numerical and analytic approach, the perturbation analysis yields a number of benefits with regard to the numerical work. The existence of a closed form solution helps to discriminate between acceptable and spurious numerical solutions. Also, the expressions obtained from the perturbation work can provide an accurate description of the solution for ranges of parameters where the numerical approaches considered here prove computationally more difficult.
Resumo:
We revisit the classical Karman rotating disk problem. A series analysis is used to derive estimates of boundary conditions at the surface. Using these estimates, computed thermal and flow fields for large mass transfer through the disk are readily obtained using a shooting method. The relevance of the problem to practical flows is discussed briefly.
Resumo:
How various additives can increase some cardio-vascular diseases and effects of transport for albumin and glucose through permeable membranes are some important studies in biomechanics. The rolling phenomena of the leucocytes gives rise to an inflammatory reaction along a vascular wall. Initiated by Eringen [5], a micropolar fluid is a satisfactory model for flows of fluids which contain micro-constituents which can undergo rotation.
Resumo:
This paper represents my attempt to turn the gaze and demonstrate how Indigenous Studies is controlled in some Australian universities in ways that witness Indigenous peoples being further marginalised, denigrated and exploited. I have endeavoured to do this through sharing an experience as a case study. I have opted to write about it as a way of exposing the problematic nature of racism, systemic marginalisation, white race privilege and radicalised subjectivity played out within an Australian higher education institution and because I am dissatisfied with the on-going status quo. In bringing forth analysis to this case study, I reveal the relationships between oppression, white race privilege and institutional privilege and the epistemology that maintains them. In moving from the position of being silent on this experience to speaking about it, I am able to move from the position of object to subject and to gain a form of liberated voice (hooks 1989:9). Furthermore, I am hopeful that it will encourage others to examine their own practices within universities and to challenge the domination that continues to subjugate Indigenous peoples.
Resumo:
Ameliorated strategies were put forward to improve the model predictive control in reducing the wind induced vibration of spatial latticed structures. The dynamic matrix control (DMC) predictive method was used and the reference trajectory which is called the decaying functions was suggested for the analysis of spatial latticed structure (SLS) under wind loads. The wind-induced vibration control model of SLS with improved DMC model predictive control was illustrated, then the different feedback strategies were investigated and a typical SLS was taken as example to investigate the reduction of wind-induced vibration. In addition, the robustness and reliability of DMC strategy were discussed by varying the model configurations.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.
Resumo:
This paper describes the operation of a microgrid that contains a custom power park (CPP). The park may contain an unbalanced and/or nonlinear load and the microgrid may contain many dis-tributed generators (DGs). One of the DGs in the microgrid is used as a compensator to achieve load compensation. A new method is proposed for current reference generation for load compensation, which takes into account the real and reactive power to be supplied by the DG connected to the compensator. The real and reactive power from the DGs and the utility source is tightly regulated assuming that dedicated communication channels are available. Therefore this scheme is most suitable in cases where the loads in CPP and DGs are physically located close to each other. The proposal is validated through extensive simulation studies using EMTDC/PSCAD software package (version 4.2).
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Resumo:
The objective of the present study was to predict the economic consequences of healthcare-acquired infections arising among admissions to Australian acute care hospitals. A quantitative algorithm informed by epidemiological and economic data was developed. All acute care hospitals in Australia were included in the study and the participants included all admissions to general medical and general surgical specialties. The main outcome measures were the numbers of cases of healthcare-acquired infection and bed days lost annually. It was estimated that there are 175 153 (95% credible interval 155 911 : 195 168) cases of healthcare-acquired infection among admissions to Australian hospitals annually, and the extra stay in hospital to treat symptoms accounts for 854 289 bed days (95% credible interval 645 091 : 1 096 244). If rates were reduced by 1%, then 150 158 bed days would be released for alternative uses. This would allow ~38 500 new admissions. Healthcare-acquired infections in patients cause bed blocks in Australian hospitals. The cost-effectiveness of hospital services might be improved by allocating more resources to infection control, releasing beds and allowing new admissions. There exists an opportunity to improve the efficiency of the Australian health care system.
Resumo:
The automation of various aspects of air traffic management has many wide-reaching benefits including: reducing the workload for Air Traffic Controllers; increasing the flexibility of operations (both civil and military) within the airspace system through facilitating automated dynamic changes to en-route flight plans; ensuring safe aircraft separation for a complex mix of airspace users within a highly complex and dynamic airspace management system architecture. These benefits accumulate to increase the efficiency and flexibility of airspace use(1). Such functions are critical for the anticipated increase in volume of manned and unmanned aircraft traffic. One significant challenge facing the advancement of airspace automation lies in convincing air traffic regulatory authorities that the level of safety achievable through the use of automation concepts is comparable to, or exceeds, the accepted safety performance of the current system.