256 resultados para Familial Melanoma


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The health of an individual is determined by the interaction of genetic and individual factors with wider social and environmental elements. Public health approaches to improving the health of disadvantaged populations will be most effective if they optimise influences at each of these levels, particularly in the early part of the life course. In order to better ascertain the relative contribution of these multi-level determinants there is a need for robust studies, longitudinal and prospective in nature, that examine individual, familial, social and environmental exposures. This paper describes the study background and methods, as it has been implemented in an Australian birth cohort study, Environments for Healthy Living (EFHL): The Griffith Study of Population Health. EFHL is a prospective, multi-level, multi-year longitudinal birth cohort study, designed to collect information from before birth through to adulthood across a spectrum of eco-epidemiological factors, including genetic material from cord-blood samples at birth, individual and familial factors, to spatial data on the living environment. EFHL commenced the pilot phase of recruitment in 2006 and open recruitment in 2007, with a target sample size of 4000 mother/infant dyads. Detailed information on each participant is obtained at birth, 12-months, 3-years, 5-years and subsequent three to five yearly intervals. The findings of this research will provide detailed evidence on the relative contribution of multi-level determinants of health, which can be used to inform social policy and intervention strategies that will facilitate healthy behaviours and choices across sub-populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin tumors can arise as a result of cumulative genetic abnormalities, including chromosomal ­aberrations that can be described as either morphological (structural rearrangements) or molecular (copy number variations). Cytogenetic techniques have been used to examine both large and small chromosomal aberrations, and include karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization. This chapter describes the recurrent aberrations associated with skin tumors, such as benign melanocytic nevi, melanoma, basal cell carcinoma, squamous cell carcinoma, actinic (solar) keratosis, Bowen’s disease, keratoacanthoma, Merkel cell carcinoma, dermatofibrosarcoma protuberans, and cutaneous lymphomas, as detected by cytogenetic methodologies. A significant number of genomic aberrations are shared across different subtypes of skin tumors, including structural and numerical alterations of chromosome 1, −3p, +3q, +6, +7, +8q, −9p, +9q, −10, −17p, +17q and +20. Aberrations specific to certain skin cancers have also been detected, and include: loss of 18q in squamous cell carcinoma, but not its precursor, actinic keratosis; loss of 9q22 in sporadic basal cell carcinoma; and translocation involving 17q22 and 22q13 in dermatofibrosarcoma protuberans. These regions contain a number of potential candidate genes that are involved in aspects of cell signaling, proliferation, differentiation, and apoptosis. Cytogenetic methodologies continue to evolve with the advent of array-based comparative genomic hybridization, copy number variation microarrays, and next-generation sequencing. It is envisioned that cytogenetic analysis will continue to be employed for identification and further exploration of novel chromosomal regions and associated genes that drive skin tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a common neurological disorder with a strong genetic basis. However, the complex nature of the disorder has meant that few genes or susceptibility loci have been identified and replicated consistently to confirm their involvement in migraine. Approaches to genetic studies of the disorder have included analysis of the rare migraine subtype, familial hemiplegic migraine with several causal genes identified for this severe subtype. However, the exact genetic contributors to the more common migraine subtypes are still to be deciphered. Genome-wide studies such as genome-wide association studies and linkage analysis as well as candidate genes studies have been employed to investigate genes involved in common migraine. Neurological, hormonal and vascular genes are all considered key factors in the pathophysiology of migraine and are a focus of many of these studies. It is clear that the influence of individual genes on the expression of this disorder will vary. Furthermore, the disorder may be dependent on gene–gene and gene–environment interactions that have not yet been considered. In addition, identifying susceptibility genes may require phenotyping methods outside of the International Classification of Headache Disorders II criteria, such as trait component analysis and latent class analysis to better define the ambit of migraine expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland, Australia has one of the highest rates of skin cancer in the world. Outdoor workers are regularly exposed to high doses of ultraviolet radiation, and are at increased risk to develop non-melanoma and melanoma skin cancers. In 2010, a health promotion intervention to improve sun protection among outdoor workers in Queensland commenced. The intervention employed a mixed methods approach and a participatory action research framework. Fourteen workplaces were recruited from building and construction, rural and farming, local government, and public sector organisations. Management and workers were engaged in cycles of assessment, reflection and discussion, planning, implementation and reassessing, over a 14-month intervention period. Overall, at least one workplace representative from each workplace (range 1-3) and in depth focus groups were held with a subset of workers (range 3-16) to assess sun safe behaviours pre and post intervention. Workers’ attitudes, beliefs, knowledge and willingness to engage in sun protection differed depending on workplace characteristics and support. A familiar theme among workers spoke of sun safety as being “common sense” and the “workers individual responsibility”. Often there was a discrepancy in the perceptions of the workers, compared to the view of workplace representatives and the workplaces position or policy on sun safety. In larger workplaces, especially Government Departments, workers were more aware and followed sun safe practices compared to smaller workplaces where sun safety was not a high priority. These results indicate that a workplace culture which places high values on safety and polices more broadly may also have a positive effect on sun safety among outdoor workers as well. In addition, the specific characteristics of the workplace and the outdoor work tasks influence workers willingness to engage in sun safety measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the migraine locus around the C19p13 region through analysis of the NOTCH3 gene (C19p13.2-p13.1), previously shown to be a gene involved in CADASIL and the TNFSF7 gene (C19p13), homologous to the ligands of TNF-alpha and TNF-beta, genes that have previously been associated with migraine. The NOTCH3 gene was analysed by sequencing all exons with known CADASIL mutations in a typical (non-familial hemiplegic) migraine family (MF1) that has previously been shown to be linked to C19p13. The TNFSF7 gene was investigated through SNP association analysis using a matched case-control migraine population. NOTCH3 gene sequencing results for affected members of MF1 proved to be negative for all known sequence variants giving rise to mutations for CADASIL. TNFSF7 gene chi-square results showed non-significant P values across all populations tested against controls, except for the MO subgroup which displayed a possible association with the TNFSF7 SNP (genotype, allele analysis P = 0.036, P = 0.017 respectively). Our results suggest that common migraine is not caused by any known CADASIL mutations in the NOTCH3 gene of interest. However, the TNFSF7 gene displayed signs of involvement in a MO affected population and indicates that further independent studies of this marker are warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine with aura (MA) is a subtype of typical migraine. Migraine with aura (MA) also encompasses a rare severe subtype Familial Hemiplegic Migraine (FHM) with several known genetic loci. The type 2 FHM (FHM-2) susceptibility locus maps to chromosome 1q23 and mutations in the ATP1A2 gene at this site have recently been implicated. We have previously provided evidence of linkage of typical migraine (predominantly MA) to microsatellite markers on chromosome 1, in the 1q31 and 1q23 regions. In this study, we have undertaken a large genomic investigation involving candidate genes that lie within the chromosome 1q23 and 1q31 regions using an association analysis approach. Methods We have genotyped a large population of case-controls (243 unrelated Caucasian migraineurs versus 243 controls) examining a set of 5 single nucleotide polymorphisms (SNPs) and the Fas Ligand dinucleotide repeat marker, located within the chromosome 1q23 and 1q31 regions. Results Several genes have been studied including membrane protein (ATP 1 subtype A4 and FasL), cytoplasmic glycoprotein (CASQ 1) genes and potassium (KCN J9 and KCN J10) and calcium (CACNA1E) channel genes in 243 migraineurs (including 85% MA and 15% of migraine without aura (MO)) and 243 matched controls. After correction for multiple testing, chi-square results showed non-significant P values (P > 0.008) across all SNPs (and a CA repeat) tested in these different genes, however results with the KCN J10 marker gave interesting results (P = 0.02) that may be worth exploring further in other populations. Conclusion These results do not show a significant role for the tested candidate gene variants and also do not support the hypothesis that a common chromosome 1 defective gene influences both FHM and the more common forms of migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a complex familial condition that imparts a significant burden on society. There is evidence for a role of genetic factors in migraine, and elucidating the genetic basis of this disabling condition remains the focus of much research. In this review we discuss results of genetic studies to date, from the discovery of the role of neural ion channel gene mutations in familial hemiplegic migraine (FHM) to linkage analyses and candidate gene studies in the more common forms of migraine. The success of FHM regarding discovery of genetic defects associated with the disorder remains elusive in common migraine, and causative genes have not yet been identified. Thus we suggest additional approaches for analysing the genetic basis of this disorder. The continuing search for migraine genes may aid in a greater understanding of the mechanisms that underlie the disorder and potentially lead to significant diagnostic and therapeutic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hemiplegic migraine is a severe, rare subtype of migraine. Gene mutations on chromosome 19 have been identified in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene (chromosome 19p13) for familial hemiplegic migraine. Recently a gene mutation (Serine-218-Leucine) for a dramatic syndrome associated with familial hemiplegic migraine, commonly named “migraine coma”, has implicated exon 5 of this gene. The occurrence of trivial head trauma, in such familial hemiplegic migraine patients, may also be complicated by severe, sometimes even fatal, cerebral edema and coma occurring after a lucid interval. Sporadic hemiplegic migraine shares a similar spectrum of clinical presentation and genetic heterogeneity. The case report presented in this article implicates the involvement of the Serine-218-Leucine mutation in the extremely rare disorder of minor head trauma–induced migraine coma. We conclude that the Serine-218-Leucine mutation in the calcium channel, voltage-dependent, P/Q type, alpha-1A subunit gene is involved in sporadic hemiplegic migraine, delayed cerebral edema and coma after minor head trauma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The aims of the study were: (i) to extend our linkage analysis of chromosome 1q microsatellite markers in predominantly migraine with aura pedigrees and (ii) to test the novel FHM-2 ATP1A2 gene for involvement in these migraine affected pedigrees and a previous pedigree (MF14) showing evidence of linkage of markers to C1q31. METHODS: A chromosome 1 scan (31 markers) was performed in 21 multiplex pedigrees affected predominantly with migraine with aura (MA). The known FHM-2 ATP1A2 gene mutations were tested, by sequencing, for the involvement in MA and migraine without aura (MO) in these pedigrees. Sequencing was performed in the coding areas of the ATP1A2 gene through three MA individuals from MF14. RESULTS: Evidence for linkage was obtained at C1q23 to markers spanning the ATP1A2 gene. However, testing of the known ATP1A2 gene mutations (for FHM) in common migraine probands of pedigrees showing excess allele sharing was negative. Sequencing of the entire coding areas of the gene through all the three MA affected from MF14 was also negative for mutations. DISCUSSION: Microsatellite markers on chromosome 1q23 show evidence of excess allele sharing in MA and some MO pedigrees, suggesting linkage to the common forms of migraine and the presence of a susceptibility gene in this region. The FHM-2 (ATP1A2 gene) does not seem to be involved in the common types of migraine. Despite certain clinical characteristics, the genetic correlation between FHM and familial typical migraine remains unclear. Several candidate genes lie within the C1q23 and C1q31 cytogenetic regions; therefore, further studies are needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Several studies have identified rare genetic variations responsible for many cases of familial breast cancer but their contribution to total breast cancer incidence is relatively small. More common genetic variations with low penetrance have been postulated to account for a higher proportion of the population risk of breast cancer. Methods and Results In an effort to identify genes that influence non-familial breast cancer risk, we tested over 25,000 single nucleotide polymorphisms (SNPs) located within approximately 14,000 genes in a large-scale case-control study in 254 German women with breast cancer and 268 age-matched women without malignant disease. We identified a marker on chromosome 14q24.3-q31.1 that was marginally associated with breast cancer status (OR = 1.5, P = 0.07). Genotypes for this SNP were also significantly associated with indicators of breast cancer severity, including presence of lymph node metastases ( P = 0.006) and earlier age of onset ( P = 0.01). The association with breast cancer status was replicated in two independent samples (OR = 1.35, P = 0.05). High-density association fine mapping showed that the association spanned about 80 kb of the zinc-finger gene DPF3 (also known as CERD4 ). One SNP in intron 1 was found to be more strongly associated with breast cancer status in all three sample collections (OR = 1.6, P = 0.003) as well as with increased lymph node metastases ( P = 0.01) and tumor size ( P = 0.01). Conclusion Polymorphisms in the 5' region of DPF3 were associated with increased risk of breast cancer development, lymph node metastases, age of onset, and tumor size in women of European ancestry. This large-scale association study suggests that genetic variation in DPF3 contributes to breast cancer susceptibility and severity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine is a common complex disorder that affects a large portion of the population and thus incurs a substantial economic burden on society. The disorder is characterized by recurrent headaches that are unilateral and usually accompanied by nausea, vomiting, photophobia, and phonophobia. The range of clinical characteristics is broad and there is evidence of comorbidity with other neurological diseases, complicating both the diagnosis and management of the disorder. Although the class of drugs known as the triptans (serotonin 5-HT1B/1D agonists) has been shown to be effective in treating a significant number of patients with migraine, treatment may in the future be further enhanced by identifying drugs that selectively target molecular mechanisms causing susceptibility to the disease. Genetically, migraine is a complex familial disorder in which the severity and susceptibility of individuals is most likely governed by several genes that may be different among families. Identification of the genomic variants involved in genetic predisposition to migraine should facilitate the development of more effective diagnostic and therapeutic applications. Genetic profiling, combined with our knowledge of therapeutic response to drugs, should enable the development of specific, individually-tailored treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migraine (with and without aura) is a prevalent neurovascular disease that shows strong familial aggregation, although the number of genes involved and the mode of inheritance is not clear. Some insight into the disease has been gained from genetic studies into a rare and very severe migraine subtype known as familial hemiplegic migraine (FHM). In this study, we took a family-based linkage and association approach to investigate the FHM susceptibility region on chromosome 1q31 for involvement in typical migraine susceptibility in affected Australian pedigrees. Initial multipoint ALLEGRO analysis provided strong evidence for linkage of Chrlq31 markers to typical migraine in a large multigenerational pedigree. The 1-LOD* unit support interval for suggestive linkage spanned approximately 18 cM with a maximum allele sharing LOD* score of 3.36 obtained for marker D1S2782 (P=0.00004). Subsequent analysis of an independent sample of 82 affected pedigrees added support to the initial findings with a maximum LOD* of 1.24 (P=0.008). Utilising the independent sample of 82 pedigrees, we also performed a family-based association test. Results of this analysis indicated distortion of allele transmission at marker D1S249 [global chi2 (5) of 15.00, P=0.010] in these pedigrees. These positive linkage and association results will need further confirmation by independent researchers. However, overall they provide good evidence for the existence of a typical migraine locus near these markers on Chrlq3l, and reinforce the idea that an FHM gene in this genomic region may also contribute to susceptibility to the more common forms of migraine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the role of the dopamine receptor genes, DRD1, DRD3, and DRD5 in the pathogenesis of migraine. BACKGROUND: Migraine is a chronic debilitating disorder affecting approximately 12% of the white population. The disease shows strong familial aggregation and presumably has a genetic basis, but at present, the type and number of genes involved is unclear. The study of candidate genes can prove useful in the identification of genes involved in complex diseases such as migraine, especially if the contribution of the gene to phenotypic expression is minor. Genes coding for proteins involved in dopamine metabolism have been implicated in a number of neurologic conditions and may play a contributory role in migraine. Hence, genes that code for enzymes and receptors modulating dopaminergic activity are good candidates for investigation of the molecular genetic basis of migraine. METHODS: We tested 275 migraineurs and 275 age- and sex-matched individuals free of migraine. Genotypic results were determined by restriction endonuclease digestion of polymerase chain reaction products to detect DRD1 and DRD3 alleles and by Genescan analysis after polymerase chain reaction using fluorescently labelled oligonucleotide primers for the DRD5 marker. RESULTS: Results of chi-square statistical analyses indicated that the allele distribution for migraine cases compared to controls was not significantly different for any of the three tested gene markers (chi2 = 0.1, P =.74 for DRD1; chi2 = 1.8, P =.18 for DRD3; and chi2 = 20.3, P =.08 for DRD5). CONCLUSIONS: These findings offer no evidence for allelic association between the tested dopamine receptor gene polymorphisms and the more prevalent forms of migraine and, therefore, do not support a role for these genes in the pathogenesis of the disorder.