210 resultados para Failure resistances
Resumo:
It has been 21 years since the decision in Rogers v Whitaker and the legal principles concerning informed consent and liability for negligence are still strongly grounded in this landmark High Court decision. This paper considers more recent developments in the law concerning the failure to disclose inherent risks in medical procedures, focusing on the decision in Wallace v Kam [2013] HCA 19. In this case, the appellant underwent a surgical procedure that carried a number of risks. The surgery itself was not performed in a sub-standard way, but the surgeon failed to disclose two risks to the patient, a failure that constituted a breach of the surgeon’s duty of care in negligence. One of the undisclosed risks was considered to be less serious than the other, and this lesser risk eventuated causing injury to the appellant. The more serious risk did not eventuate, but the appellant argued that if the more serious risk had been disclosed, he would have avoided his injuries completely because he would have refused to undergo the procedure. Liability was disputed by the surgeon, with particular reference to causation principles. The High Court of Australia held that the appellant should not be compensated for harm that resulted from a risk he would have been willing to run. We examine the policy reasons underpinning the law of negligence in this specific context and consider some of the issues raised by this unusual case. We question whether some of the judicial reasoning adopted in this case, represents a significant shift in traditional causation principles.
Resumo:
In Kumar v Suncorp Metway Insurance Limited [2004] QSC 381 Douglas J examined s37 of the Motor Accident Insurance Act 1994 (Qld) in the context of an accident involving multiple insurers when a notice of accident had not been given to the Nominal Defendant
Resumo:
Railhead is perhaps the highest stressed civil infrastructure due to the passage of heavily loaded wheels through a very small contact patch. The stresses at the contact patch cause yielding of the railhead material and wear. Many theories exist for the prediction of these mechanisms of continuous rails; this process in the discontinuous rails is relatively sparingly researched. Discontinuous railhead edges fail due to accumulating excessive plastic strains. Significant safety concern is widely reported as these edges form part of Insulated Rail Joints (IRJs) in the signalling track circuitry. Since Hertzian contact is not valid at a discontinuous edge, 3D finite element (3DFE) models of wheel contact at a railhead edge have been used in this research. Elastic–plastic material properties of the head hardened rail steel have been experimentally determined through uniaxial monotonic tension tests and incorporated into a FE model of a cylindrical specimen subject to cyclic tension load- ing. The parameters required for the Chaboche kinematic hardening model have been determined from the stabilised hysteresis loops of the cyclic load simulation and imple- mented into the 3DFE model. The 3DFE predictions of the plastic strain accumulation in the vicinity of the wheel contact at discontinuous railhead edges are shown to be affected by the contact due to passage of wheels rather than the magnitude of the loads the wheels carry. Therefore to eliminate this failure mechanism, modification to the contact patch is essential; reduction in wheel load cannot solve this problem.
Resumo:
This paper evaluates and proposes various compensation methods for three-level Z-source inverters under semiconductor-failure conditions. Unlike the fault-tolerant techniques used in traditional three-level inverters, where either an extra phase-leg or collective switching states are used, the proposed methods for three-level Z-source inverters simply reconfigure their relevant gating signals so as to ride-through the failed semiconductor conditions smoothly without any significant decrease in their ac-output quality and amplitude. These features are partly attributed to the inherent boost characteristics of a Z-source inverter, in addition to its usual voltage-buck operation. By focusing on specific types of three-level Z-source inverters, it can also be shown that, for the dual Z-source inverters, a unique feature accompanying it is its extra ability to force common-mode voltage to zero even under semiconductor-failure conditions. For verifying these described performance features, PLECS simulation and experimental testing were performed with some results captured and shown in a later section for visual confirmation.
Resumo:
An increasing range of services are now offered via online applications and e-commerce websites. However, problems with online services still occur at times, even for the best service providers due to the technical failures, informational failures, or lack of required website functionalities. Also, the widespread and increasing implementation of web services means that service failures are both more likely to occur, and more likely to have serious consequences. In this paper we first develop a digital service value chain framework based on existing service delivery models adapted for digital services. We then review current literature on service failure prevention, and provide a typology of technolo- gies and approaches that can be used to prevent failures of different types (functional, informational, system), that can occur at different stages in the web service delivery. This makes a contribution to theory by relating specific technologies and technological approaches to the point in the value chain framework where they will have the maximum impact. Our typology can also be used to guide the planning, justification and design of robust, reliable web services.
Resumo:
The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the deleterious consequences of proteasome inhibition are rescued by amino acid supplementation. In all three systems, this rescuing effect occurs without noticeable changes in the levels of proteasome substrates. In mammalian cells, the amino acid scarcity resulting from proteasome inhibition is the signal that causes induction of both the integrated stress response and autophagy, in an unsuccessful attempt to replenish the pool of intracellular amino acids. These results reveal that cells can tolerate protein waste, but not the amino acid scarcity resulting from proteasome inhibition.
Resumo:
The centrality of knowledge sharing to organisations' sustainability has been established. This case study illustrates the influences on individual knowledge sharing decision-making and behaviour among professionals and paraprofessionals - specifically civil engineers and design drafters - in a large public sector organisation that provides transportation infrastructure. The case examines the ways in which overlapping sets of values and behavioural drivers affect knowledge sharing orientation and practices in a collective of experts and novices working in an environment that is largely project-based. The alignment among sector, profession and organisation values provides a supportive environment for knowledge sharing, however individual behaviour is found to be most strongly influenced by the presence and quality of relational capital.
Resumo:
Background Artemisinin-combination therapy is a highly effective treatment for uncomplicated falciparum malaria but parasite recrudescence has been commonly reported following artemisinin (ART) monotherapy. The dormancy recovery hypothesis has been proposed to explain this phenomenon, which is different from the slower parasite clearance times reported as the first evidence of the development of ART resistance. Methods In this study, an existing P. falciparum infection model is modified to incorporate the hypothesis of dormancy. Published in vitro data describing the characteristics of dormant parasites is used to explore whether dormancy alone could be responsible for the high recrudescence rates observed in field studies using monotherapy. Several treatment regimens and dormancy rates were simulated to investigate the rate of clinical and parasitological failure following treatment. Results The model output indicates that following a single treatment with ART parasitological and clinical failures occur in up to 77% and 67% of simulations, respectively. These rates rapidly decline with repeated treatment and are sensitive to the assumed dormancy rate. The simulated parasitological and clinical treatment failure rates after 3 and 7 days of treatment are comparable to those reported from several field trials. Conclusions Although further studies are required to confirm dormancy in vivo, this theoretical study adds support for the hypothesis, highlighting the potential role of this parasite sub-population in treatment failure following monotherapy and reinforcing the importance of using ART in combination with other anti-malarials.
Resumo:
Background Despite the remarkable activity of artemisinin and its derivatives, monotherapy with these agents has been associated with high rates of recrudescence. The temporary arrest of the growth of ring-stage parasites (dormancy) after exposure to artemisinin drugs provides a plausible explanation for this phenomenon. Methods Ring-stage parasites of several Plasmodium falciparum lines were exposed to different doses of dihydroartemisinin (DHA) alone or in combination with mefloquine. For each regime, the proportion of recovering parasites was determined daily for 20 days. Results Parasite development was abruptly arrested after a single exposure to DHA, with some parasites being dormant for up to 20 days. Approximately 50% of dormant parasites recovered to resume growth within the first 9 days. The overall proportion of parasites recovering was dose dependent, with recovery rates ranging from 0.044% to 1.313%. Repeated treatment with DHA or with DHA in combination with mefloquine led to a delay in recovery and an ∼10-fold reduction in total recovery. Strains with different genetic backgrounds appeared to vary in their capacity to recover. Conclusions These results imply that artemisinin-induced arrest of growth occurs readily in laboratory-treated parasites and may be a key factor in P. falciparum malaria treatment failure.
Resumo:
This paper presents an event-based failure model to predict the number of failures that occur in water distribution assets. Often, such models have been based on analysis of historical failure data combined with pipe characteristics and environmental conditions. In this paper weather data have been added to the model to take into account the commonly observed seasonal variation of the failure rate. The theoretical basis of existing logistic regression models is briefly described in this paper, along with the refinements made to the model for inclusion of seasonal variation of weather. The performance of these refinements is tested using data from two Australian water authorities.
Resumo:
While the use of environmental factors in the analysis and prediction of failures of buried reticulation pipes in cold environments has been the focus of extensive work, the same cannot be said for failures occurring on pipes in other (non-freezing) environments. A novel analysis of pipe failures in such an environment is the subject of this paper. An exploratory statistical analysis was undertaken, identifying a peak in failure rates during mid to late summer. This peak was found to correspond to a peak in the rate of circumferential failures, whilst the rate of longitudinal failures remained constant. Investigation into the effect of climate on failure rates revealed that the peak in failure rates occurs due to differential soil movement as the result of shrinkage in expansive soils.
Resumo:
This paper details a statistical analysis of historical failure data, which focuses on determining the manner in which local climate affects pipe failure rates. It was found that seasonality exists in the data, indicating an affect of local climate on failure rate. Significant variation in failure rates was seen between the months of December and May, especially in February/March, whilst limited variations were seen in other months of the year. Further analysis found that failure rates were strongly correlated with minimum antecedent precipitation index and net evaporation and that climate affected failure rate by influencing soil moisture content. Interaction affects between static attributes of the pipe-environment system and local climate were also investigated.
Resumo:
This paper investigates the adverse effects of familiarity and human factors issues associated with the reliability of low-cost warning devices at level crossings. The driving simulator study featured a repetitive, low workload, monotonous driving task in which there were no failures of the level crossing (control) or prolonged or intermittent right-side failures (where the device reverts to a safe failure mode). The results of the experiment provided mixed support for the familiarity hypothesis. Four of the 23 participants collided with the train when it first appeared on trial 10 but safety margins increased from the first train to the next presentation of a train (trial 12). Contrary to expectations, the safety margins decreased with repeated right-side failure only for the intermittent condition. The limited head movement data showed that participants in the prolonged failure condition were more likely to turn their head to check for trains in the right-side failure trials than in earlier trials where there was no signal and no train. Few control participants turned their head to check for trains when no signal was presented. This research highlights the need to consider repetitive tasks and workload in experimental design and accident investigation at railway level crossings.