396 resultados para FDTD methods
Resumo:
The psychological contract is a key analytical device utilised by both academics and practitioners to conceptualise and explore the dynamics of the employment relationship. However, despite the recognised import of the construct, some authors suggest that its empirical investigation has fallen into a 'methodological rut' [Conway & Briner, 2005, p. 89] and is neglecting to assess key tenets of the concept, such as its temporal and dynamic nature. This paper describes the research design of a longitudinal, mixed methods study which draws upon the strengths of both qualitative and quantitative modes of inquiry in order to explore the development of, and changes in, the psychological contract. Underpinned by a critical realist philosophy, the paper seeks to offer a research design suitable for exploring the process of change not only within the psychological contract domain, but also for similar constructs in the human resource management and broader organisational behaviour fields.
Resumo:
In 2009 the Australian Federal and State governments are expected to have spent some AU$30 billion procuring infrastructure projects. For governments with finite resources but many competing projects, formal capital rationing is achieved through use of Business Cases. These Business cases articulate the merits of investing in particular projects along with the estimated costs and risks of each project. Despite the sheer size and impact of infrastructure projects, there is very little research in Australia, or internationally, on the performance of these projects against Business Case assumptions when the decision to invest is made. If such assumptions (particularly cost assumptions) are not met, then there is serious potential for the misallocation of Australia’s finite financial resources. This research addresses this important gap in the literature by using combined quantitative and qualitative research methods, to examine the actual performance of 14 major Australian government infrastructure projects. The research findings are controversial as they challenge widely held perceptions of the effectiveness of certain infrastructure delivery practices. Despite this controversy, the research has had a significant impact on the field and has been described as ‘outstanding’ and ‘definitive’ (Alliancing Association of Australasia), "one of the first of its kind" (Infrastructure Partnerships of Australia) and "making a critical difference to infrastructure procurement" (Victorian Department of Treasury). The implications for practice of the research have been profound and included the withdrawal by Government of various infrastructure procurement guidelines, the formulation of new infrastructure policies by several state governments and the preparation of new infrastructure guidelines that substantially reflect the research findings. Building on the practical research, a more rigorous academic investigation focussed on the comparative cost uplift of various project delivery strategies was submitted to Australia’s premier academic management conference, the Australian and New Zealand Academy of Management (ANZAM) Annual Conference. This paper has been accepted for the 2010 ANZAM National Conference following a process of double blind peer review with reviewers rating the paper’s overall contribution as "Excellent" and "Good".
Resumo:
With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.
Resumo:
This paper proposes a new research method, Participatory Action Design Research (PADR), for studies in the Urban Informatics domain. PADR supports Urban Informatics research in developing new technological means (e.g. using mobile and ubiquitous computing) to resolve contemporary issues or support everyday life in urban environments. The paper discusses the nature, aims and inherent methodological needs of Urban Informatics research, and proposes PADR as a method to address these needs. Situated in a socio-technical context, Urban Informatics requires a close dialogue between social and design-oriented fields of research as well as their methods. PADR combines Action Research and Design Science Research, both of which are used in Information Systems, another field with a strong socio-technical emphasis, and further adapts them to the cross-disciplinary needs and research context of Urban Informatics.
Resumo:
Bioinformatics involves analyses of biological data such as DNA sequences, microarrays and protein-protein interaction (PPI) networks. Its two main objectives are the identification of genes or proteins and the prediction of their functions. Biological data often contain uncertain and imprecise information. Fuzzy theory provides useful tools to deal with this type of information, hence has played an important role in analyses of biological data. In this thesis, we aim to develop some new fuzzy techniques and apply them on DNA microarrays and PPI networks. We will focus on three problems: (1) clustering of microarrays; (2) identification of disease-associated genes in microarrays; and (3) identification of protein complexes in PPI networks. The first part of the thesis aims to detect, by the fuzzy C-means (FCM) method, clustering structures in DNA microarrays corrupted by noise. Because of the presence of noise, some clustering structures found in random data may not have any biological significance. In this part, we propose to combine the FCM with the empirical mode decomposition (EMD) for clustering microarray data. The purpose of EMD is to reduce, preferably to remove, the effect of noise, resulting in what is known as denoised data. We call this method the fuzzy C-means method with empirical mode decomposition (FCM-EMD). We applied this method on yeast and serum microarrays, and the silhouette values are used for assessment of the quality of clustering. The results indicate that the clustering structures of denoised data are more reasonable, implying that genes have tighter association with their clusters. Furthermore we found that the estimation of the fuzzy parameter m, which is a difficult step, can be avoided to some extent by analysing denoised microarray data. The second part aims to identify disease-associated genes from DNA microarray data which are generated under different conditions, e.g., patients and normal people. We developed a type-2 fuzzy membership (FM) function for identification of diseaseassociated genes. This approach is applied to diabetes and lung cancer data, and a comparison with the original FM test was carried out. Among the ten best-ranked genes of diabetes identified by the type-2 FM test, seven genes have been confirmed as diabetes-associated genes according to gene description information in Gene Bank and the published literature. An additional gene is further identified. Among the ten best-ranked genes identified in lung cancer data, seven are confirmed that they are associated with lung cancer or its treatment. The type-2 FM-d values are significantly different, which makes the identifications more convincing than the original FM test. The third part of the thesis aims to identify protein complexes in large interaction networks. Identification of protein complexes is crucial to understand the principles of cellular organisation and to predict protein functions. In this part, we proposed a novel method which combines the fuzzy clustering method and interaction probability to identify the overlapping and non-overlapping community structures in PPI networks, then to detect protein complexes in these sub-networks. Our method is based on both the fuzzy relation model and the graph model. We applied the method on several PPI networks and compared with a popular protein complex identification method, the clique percolation method. For the same data, we detected more protein complexes. We also applied our method on two social networks. The results showed our method works well for detecting sub-networks and give a reasonable understanding of these communities.
Resumo:
Backgrounds Whether suicide in China has significant seasonal variations is unclear. The aim of this study is to examine the seasonality of suicide in Shandong China and to assess the associations of suicide seasonality with gender, residence, age and methods of suicide. Methods Three types of tests (Chi-square, Edwards' T and Roger's Log method) were used to detect the seasonality of the suicide data extracted from the official mortality data of Shandong Disease Surveillance Point (DSP) system. Peak/low ratios (PLRs) and 95% confidence intervals (CIs) were calculated to indicate the magnitude of seasonality. Results A statistically significant seasonality with a single peak in suicide rates in spring and early summer, and a dip in winter was observed, which remained relatively consistent over years. Regardless of gender, suicide seasonality was more pronounced in rural areas, younger age groups and for non-violent methods, in particular, self-poisoning by pesticide. Conclusions There are statistically significant seasonal variations of completed suicide for both men and women in Shandong, China. Differences exist between residence (urban/rural), age groups and suicide methods. Results appear to support a sociological explanation of suicide seasonality.
Resumo:
Under pressure from both the ever increasing level of market competition and the global financial crisis, clients in consumer electronics (CE) industry are keen to understand how to choose the most appropriate procurement method and hence to improve their competitiveness. Four rounds of Delphi questionnaire survey were conducted with 12 experts in order to identify the most appropriate procurement method in the Hong Kong CE industry. Five key selection criteria in the CE industry are highlighted, including product quality, capability, price competition, flexibility and speed. This study also revealed that product quality was found to be the most important criteria for the “First type used commercially” and “Major functional improvements” projects. As for “Minor functional improvements” projects, price competition was the most crucial factor to be considered during the PP selection. These research findings provide owners with useful insights to select the procurement strategies.
Resumo:
Research Interests: Are parents complying with the legislation? Is this the same for urban, regional and rural parents? Indigenous parents? What difficulties do parents experience in complying? Do parents understand why the legislation was put in place? Have there been negative consequences for other organisations or sectors of the community?
Resumo:
Recent studies have started to explore context-awareness as a driver in the design of adaptable business processes. The emerging challenge of identifying and considering contextual drivers in the environment of a business process are well understood, however, typical methods used in business process modeling do not yet consider this additional contextual information in their process designs. In this chapter, we describe our research towards innovative and advanced process modeling methods that include mechanisms to incorporate relevant contextual drivers and their impacts on business processes in process design models. We report on our ongoing work with an Australian insurance provider and describe the design science we employed to develop these innovative and useful artifacts as part of a context-aware method framework. We discuss the utility of these artifacts in an application in the claims handling process at the case organization.
Resumo:
This paper reviews the current state in the application of infrared methods, particularly mid-infrared (mid-IR) and near infrared (NIR), for the evaluation of the structural and functional integrity of articular cartilage. It is noted that while a considerable amount of research has been conducted with respect to tissue characterization using mid-IR, it is almost certain that full-thickness cartilage assessment is not feasible with this method. On the contrary, the relatively more considerable penetration capacity of NIR suggests that it is a suitable candidate for full-thickness cartilage evaluation. Nevertheless, significant research is still required to improve the specificity and clinical applicability of the method if we are going to be able to use it for distinguishing between functional and dysfunctional cartilage.
Resumo:
Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.