188 resultados para Error Vector Magnitude (EVM)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well understood that that there is variation inherent in all testing techniques, and that all soil and rock materials also contain some degree of natural variability. Less consideration is normally given to variation associated with natural material heterogeneity within a site, or the relative condition of the material at the time of testing. This paper assesses the impact of spatial and temporal variability upon repeated insitu testing of a residual soil and rock profile present within a single residential site over a full calendar year, and thus range of seasonal conditions. From this repeated testing, the magnitude of spatial and temporal variation due to seasonal conditions has demonstrated that, depending on the selected location and moisture content of the subsurface at the time of testing, up to a 35% variation within the test results can be expected. The results have also demonstrated that the completed insitu test technique has a similarly large measurement and inherent variability error and, for the investigated site, up to a 60% variation in normalised results was observed. From these results, it is recommended that the frequency and timing of insitu tests should be considered when deriving geotechnical design parameters from a limited data set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bounds on the expectation and variance of errors at the output of a multilayer feedforward neural network with perturbed weights and inputs are derived. It is assumed that errors in weights and inputs to the network are statistically independent and small. The bounds obtained are applicable to both digital and analogue network implementations and are shown to be of practical value.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional MRI studies commonly refer to activation patterns as being localized in specific Brodmann areas, referring to Brodmann’s divisions of the human cortex based on cytoarchitectonic boundaries [3]. Typically, Brodmann areas that match regions in the group averaged functional maps are estimated by eye, leading to inaccurate parcellations and significant error. To avoid this limitation, we developed a method using high-dimensional nonlinear registration to project the Brodmann areas onto individual 3D co-registered structural and functional MRI datasets, using an elastic deformation vector field in the cortical parameter space. Based on a sulcal pattern matching approach [11], an N=27 scan single subject atlas (the Colin Holmes atlas [15]) with associated Brodmann areas labeled on its surface, was deformed to match 3D cortical surface models generated from individual subjects’ structural MRIs (sMRIs). The deformed Brodmann areas were used to quantify and localize functional MRI (fMRI) BOLD activation during the performance of the Tower of London task [7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the issue of face, speaker and bi-modal authentication in mobile environments when there is significant condition mismatch. We introduce this mismatch by enrolling client models on high quality biometric samples obtained on a laptop computer and authenticating them on lower quality biometric samples acquired with a mobile phone. To perform these experiments we develop three novel authentication protocols for the large publicly available MOBIO database. We evaluate state-of-the-art face, speaker and bi-modal authentication techniques and show that inter-session variability modelling using Gaussian mixture models provides a consistently robust system for face, speaker and bi-modal authentication. It is also shown that multi-algorithm fusion provides a consistent performance improvement for face, speaker and bi-modal authentication. Using this bi-modal multi-algorithm system we derive a state-of-the-art authentication system that obtains a half total error rate of 6.3% and 1.9% for Female and Male trials, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To assess the performance of the 2Win eccentric videorefractor in relation to subjective refraction and table-mounted autorefraction. METHODS Eighty-six eyes of 86 adults (46 male and 40 female subjects) aged between 20 and 25 years were examined. Subjective refraction and autorefraction using the table-mounted Topcon KR8800 and the handheld 2Win videorefractor were carried out in a randomized fashion by three different masked examiners. Measurements were repeated about 1 week after to assess instrument reproducibility, and the intertest variability was compared between techniques. Agreement of the 2Win videorefractor with subjective refraction and autorefraction was assessed for sphere and for cylindrical vectors at 0 degrees (J0) and 45 degrees (J45). RESULTS Reproducibility coefficients for sphere values measured by subjective refraction, Topcon KR8800, and 2Win (±0.42, ±0.70, and ±1.18, respectively) were better than their corresponding J0 (±1.0, ±0.85, and ±1.66) and J45 (±1.01, ±0.87, and ±1.31) vector components. The Topcon KR8800 showed the most reproducible values for mean spherical equivalent refraction and the J0 and J45 vector components, whereas reproducibility of spherical component was best for subjective refraction. The 2Win videorefractor measurements were the least reproducible for all measures. All refractive components measured by the 2Win videorefractor did not differ significantly from those of subjective refraction, in both sessions (p > 0.05). The Topcon KR8800 autorefractometer and the 2Win videorefractor measured significantly more positive spheres and mean spherical equivalent refraction (p < 0.0001), but the J0 and J45 vector components were similar (p > 0.05), in both sessions. CONCLUSIONS The 2Win videorefractor compares well, on average, with subjective refraction. The reproducibility values for the 2Win videorefractor were considerably worse than either subjective refraction or autorefraction. The wide limits of reproducibility of the 2Win videorefractor probably limit its usefulness as a primary screening device.