169 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, general order conditions and a global convergence proof are given for stochastic Runge Kutta methods applied to stochastic ordinary differential equations ( SODEs) of Stratonovich type. This work generalizes the ideas of B-series as applied to deterministic ordinary differential equations (ODEs) to the stochastic case and allows a completely general formalism for constructing high order stochastic methods, either explicit or implicit. Some numerical results will be given to illustrate this theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many software applications extend their functionality by dynamically loading executable components into their allocated address space. Such components, exemplified by browser plugins and other software add-ons, not only enable reusability, but also promote programming simplicity, as they reside in the same address space as their host application, supporting easy sharing of complex data structures and pointers. However, such components are also often of unknown provenance and quality and may be riddled with accidental bugs or, in some cases, deliberately malicious code. Statistics show that such component failures account for a high percentage of software crashes and vulnerabilities. Enabling isolation of such fine-grained components is therefore necessary to increase the stability, security and resilience of computer programs. This thesis addresses this issue by showing how host applications can create isolation domains for individual components, while preserving the benefits of a single address space, via a new architecture for software isolation called LibVM. Towards this end, we define a specification which outlines the functional requirements for LibVM, identify the conditions under which these functional requirements can be met, define an abstract Application Programming Interface (API) that encompasses the general problem of isolating shared libraries, thus separating policy from mechanism, and prove its practicality with two concrete implementations based on hardware virtualization and system call interpositioning, respectively. The results demonstrate that hardware isolation minimises the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution’s correctness. This thesis concludes that, not only is it feasible to create such isolation domains for individual components, but that it should also be a fundamental operating system supported abstraction, which would lead to more stable and secure applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerically investigation of free convection heat transfer in a differentially heated trapezoidal cavity filled with non-Newtonian Power-law fluid has been performed in this study. The left inclined surface is uniformly heated whereas the right inclined surface is maintained as uniformly cooled. The top and bottom surfaces are kept adiabatic with initially quiescent fluid inside the enclosure. Finite volume based commercial software FLUENT 14.5 is used to solve the governing equations. Dependency of various flow parameters of fluid flow and heat transfer is analyzed including Rayleigh number, Ra ranging from 10^5 to 10^7, Prandtl number, Pr of 100 to 10,000 and power index, n of 0.6 to 1.4. Outcomes have been reported in terms of isotherms, streamline, and local Nusselt number for various Ra, Pr, n and inclined angles. Grid sensitivity analysis is performed and numerically obtained results have been compared with those results available in the literature and found good agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerically investigation of free convection within a porous cavity with differential heating has been performed using modified corrugated side walls. Sinusoidal hot left and cold right walls are assumed to receive sudden differentially heating where top and bottom walls are insulated. Air is considered as working fluid and is quiescent, initially. Numerical experiments reveal 3 distinct stages of developing pattern including initial stage, oscillatory intermediate and finally steady state condition. Implicit Finite Volume Method with TDMA solver is used to solve the governing equations. This study has been performed for the Rayleigh numbers ranging from 100 to 10,000. Outcomes have been reported in terms of isotherms, streamline, velocity and temperature plots and average Nusselt number for various Ra, corrugation frequency and corrugation amplitude. The effects of sudden differential heating and its resultant transient behavior on fluid flow and heat transfer characteristics have been shown for the range of governing parameters. The present results show that the transient phenomena are enormously influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This e-book is devoted to the use of spreadsheets in the service of education in a broad spectrum of disciplines: science, mathematics, engineering, business, and general education. The effort is aimed at collecting the works of prominent researchers and educators that make use of spreadsheets as a means to communicate concepts with high educational value. The e-book brings some of the most recent applications of spreadsheets in education and research to the fore. To offer the reader a broad overview of the diversity of applications, carefully chosen articles from engineering (power systems and control), mathematics (calculus, differential equations, and probability), science (physics and chemistry), and education are provided. Some of these applications make use of Visual Basic for Applications (VBA), a versatile computer language that further expands the functionality of spreadsheets. The material included in this e-book should inspire readers to devise their own applications and enhance their teaching and/or learning experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear stability analysis introduced by Chen and Haughton [1] is employed to study the full nonlinear stability of the non-homogeneous spherically symmetric deformation of an elastic thick-walled sphere. The shell is composed of an arbitrary homogeneous, incompressible elastic material. The stability criterion ultimately requires the solution of a third-order nonlinear ordinary differential equation. Numerical calculations performed for a wide variety of well-known incompressible materials are then compared with existing bifurcation results and are found to be identical. Further analysis and comparison between stability and bifurcation are conducted for the case of thin shells and we prove by direct calculation that the two criteria are identical for all modes and all materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a hybrid cellular automata model to describe the effect of the immune system and chemokines on a growing tumor. The hybrid cellular automata model consists of partial differential equations to model chemokine concentrations, and discrete cellular automata to model cell–cell interactions and changes. The computational implementation overlays these two components on the same spatial region. We present representative simulations of the model and show that increasing the number of immature dendritic cells (DCs) in the domain causes a decrease in the number of tumor cells. This result strongly supports the hypothesis that DCs can be used as a cancer treatment. Furthermore, we also use the hybrid cellular automata model to investigate the growth of a tumor in a number of computational “cancer patients.” Using these virtual patients, the model can explain that increasing the number of DCs in the domain causes longer “survival.” Not surprisingly, the model also reflects the fact that the parameter related to tumor division rate plays an important role in tumor metastasis.