208 resultados para DISTANCES
Resumo:
Various models for the crystal structure of hydronium jarosite were determined from Rietveld refinements against neutron powder diffraction patterns collected at ambient temperature and also single-crystal X-ray diffraction data. The possibility of a lower symmetry space group for hydronium jarosite that has been suggested by the literature was investigated. It was found the space group is best described as R3¯m, the same for other jarosite minerals. The hydronium oxygen atom was found to occupy the 3¯m site (3a Wyckoff site). Inadequately refined hydronium bond angles and bond distances without the use of restraints are due to thermal motion and disorder of the hydronium hydrogen atoms across numerous orientations. However, the acquired data do not permit a precise determination of these orientations; the main feature up/down disorder of hydronium is clear. Thus, the highest symmetry model with the least disorder necessary to explain all data was chosen: The hydronium hydrogen atoms were modeled to occupy an m (18 h Wyckoff site) with 50 % fractional occupancy, leading to disorder across two orientations. A rigid body description of the hydronium ion rotated by 60° with H–O–H bond angles of 112° and O–H distances of 0.96 Å was optimal. This rigid body refinement suggests that hydrogen bonds between hydronium hydrogen atoms and basal sulfate oxygen atoms are not predominant. Instead, hydrogen bonds are formed between hydronium hydrogen atoms and hydroxyl oxygen atoms. The structure of hydronium alunite is expected to be similar given that alunite supergroup minerals are isostructural.
Resumo:
We have compared physical and genetic maps of the region around the legJ gene in pea. In this vicinity there are four B-type legumin genes, arranged as two close pairs. The detection of a recombination event within this gene cluster allows the orientation of this group of genes within the surrounding linkage group to be determined. The relationship between physical and genetic distances in this region is discussed, as are the implications of this for relating physical and genetic maps elsewhere in the pea genome.
Resumo:
It has been shown that active control of locomotion increases accuracy and precision of nonvisual space perception, but psychological mechanisms of this enhancement are poorly understood. The present study explored a hypothesis that active control of locomotion enhances space perception by facilitating crossmodal interaction between visual and nonvisual spatial information. In an experiment, blindfolded participants walked along a linear path under one of the following two conditions: (1) They walked by themselves following a guide rope; and (2) they were led by an experimenter. Subsequently, they indicated the walked distance by tossing a beanbag to the origin of locomotion. The former condition gave participants greater control of their locomotion, and thus represented a more active walking condition. In addition, before each trial, half the participants viewed the room in which they performed the distance perception task. The other half remained blindfolded throughout the experiment. Results showed that although the room was devoid of any particular cues for walked distances, visual knowledge of the surroundings improved the precision of nonvisual distance perception. Importantly, however, the benefit of preview was observed only when participants walked more actively. This indicates that active control of locomotion allowed participants to better utilize their visual memory of the environment for perceiving nonvisually encoded distance, suggesting that active control of locomotion served as a catalyst for integrating visual and nonvisual information to derive spatial representations of higher quality.
Resumo:
While concrete recycling is practiced worldwide, there are many unanswered questions in relation to ultrafine particle (UFP; Dp<100nm) emissions and exposure around recycling sites. In particular: (i) Does recycling produce UFPs and in what quantities? (ii) How do they disperse around the source? (iii) What impact does recycling have on ambient particle number concentrations (PNCs) and exposure? (iv) How effective are commonly used dust respirators to limit exposure? We measured size-resolved particles in the 5-560 nm range at five distances from a simulated concrete recycling source and found that: (i) the size distributions were multimodal, with up to ~93% of total PNC in the UFP size range; and (ii) dilution was a key particle transformation mechanism. UFPs showed a much slower decay rate, requiring ~62% more distance to reach 10% of their initial concentration compared with their larger counterparts. Compared with typical urban exposure during car journeys, exposure decay profiles showed up to ~5 times higher respiratory deposition within 10 m of the source. Dust respirators were found to remove half of total PNC; however the removal factor for UFPs was only ~57% of that observed in the 100-560 nm size range. These findings highlight a need for developing an understanding of the nature of the particles as well as for better control measures to limit UFP exposure.
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.
Resumo:
The mineral kidwellite, a hydrated hydroxy phosphate of ferric iron and sodium of approximate formula NaFe93+(PO4)6(OH)11⋅3H2O, has been studied using a combination of electron microscopy with EDX and vibrational spectroscopic techniques. Raman spectroscopy identifies an intense band at 978 cm−1 and 1014 cm−1. These bands are attributed to the PO43− ν1 symmetric stretching mode. The ν3 antisymmetric stretching modes are observed by a large number of Raman bands. The series of Raman bands at 1034, 1050, 1063, 1082, 1129, 1144 and 1188 cm−1 are attributed to the ν3 antisymmetric stretching bands of the PO43− and HOPO32− units. The observation of these multiple Raman bands in the symmetric and antisymmetric stretching region gives credence to the concept that both phosphate and hydrogen phosphate units exist in the structure of kidwellite. The series of Raman bands at 557, 570, 588, 602, 631, 644 and 653 cm−1are assigned to the PO43− ν2 bending modes. The series of Raman bands at 405, 444, 453, 467, 490 and 500 cm−1 are attributed to the PO43− and HOPO32− ν4 bending modes. The spectrum is quite broad but Raman bands may be resolved at 3122, 3231, 3356, 3466 and 3580 cm−1. These bands are assigned to water stretching vibrational modes. The number and position of these bands suggests that water is in different molecular environments with differing hydrogen bond distances. Infrared bands at 3511 and 3359 cm−1 are ascribed to the OH stretching vibration of the OH units. Very broad bands at 3022 and 3299 cm−1 are attributed to the OH stretching vibrations of water. Vibrational spectroscopy offers insights into the molecular structure of the phosphate mineral kidwellite.
Resumo:
An innovative approach to fabricate tailored Mo-oxide nanostructures and composite nanoarchitectures using atmospheric microplasmas sustained in a gap between a Mo wire and a Si substrate is reported. It is shown that at smaller gap distances spherical nanoparticles are produced whereas sheet-like structures emerge when the gap is increased. When the wire is consumed continuously, it is possible to synthesize complex nanoarchitectures made of nanoparticles decorated with nanosheets. These processes can be applied for other metal and metal oxide materials and suggest a way to improve control and predictability, common problems in high-yield nanofabrication.
Resumo:
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.
Resumo:
We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)3− stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)3− bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers.
Resumo:
The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.
Resumo:
High voltage powerlines may give rise to corona breakdown, resulting in the release of large concentrations of charged ions into the surrounding environment. These ions quickly attach to aerosols and the resulting charged particles are carried by prevalent winds. This paper describes a study carried out at a site near an overhead double circuit ac transmission voltage powerline to investigate factors that control the rate at which charged particles are produced, and to determine the total particle number concentrations, total particle charge concentrations and vertical dc electric fields in the proximity of the line. Measured mean values of these three parameters at a perpendicular distance of 50m from the line were 1.8 x 103 particle cm-3, 518 ions cm3 and 520 V m-1 respectively. The net electric charge was positive and the electric field was directed downwards. These parameters were correlated with each other and monitored at four different distances from the line. Effects of meteorological parameters such as wind speed and wind direction were also investigated.
Resumo:
Objectives: Driver sleepiness contributes substantially to road crash incidents. Simulator and on-road studies clearly reveal an impairing effect from sleepiness for driving ability. However, drivers might not appreciate the dangerousness of driving while sleepy and this could translate to their on-road driving behaviours. This study sought to determine drivers’ on-road experiences of sleepiness, their sleep habits, and personal awareness of the signs of sleepiness. Methods: Participants were a random selection of 92 drivers travelling on a major highway in the state of Queensland, Australia, who were stopped by Police as part of routine drink driving operations. Participants completed a brief questionnaire that included: demographic details, awareness and on-road experiences of sleepy driving, and sleep habits. A modified version of the Karolinska Sleepiness Scale (KSS) was used to assess subjective sleepiness during the last 15 minutes of driving. Results: Participants rating of subjective sleepiness was quite low with 90% reporting at or below 3 on the KSS. Participants were reasonably aware of the signs of sleepiness; with a number of these correlated with on-road experiences. The participants sleep debt correlated with their alertness (r = -.30) and the hours spent driving (r = .38). Conclusions: These results suggest that drivers had moderate or substantial experience of driving when sleepy and many were aware of the signs of sleepiness. As many of the participants reported driving long distances after suboptimal sleep durations, it is possible that their risk perception of the dangerousness of sleepy driving maybe erroneous.
Resumo:
The policy instruments that provide information on a firm's or facility's environmental performance, such as the U.S. Toxic Release Inventory (TRI) and the Pollutant Release and Transfer Register system (PRTRs) used in some European countries and Japan, play an important role in encouraging firms or facilities to improve their environmental performance, if investors, consumers and residents recognize their environmental performance. This study uses a hedonic approach to explore how the Japanese rental housing market responds to carcinogenic risk arising from releases and transfers of chemical substances produced and used at close facilities. We found that residents do not perceive carcinogenic risk generated more than 1.0 km away from their residence and that they seem to recognize the increased carcinogenic risk at distances from 0.5 km to 1.0 km away; a 1% increase in carcinogenic risk reduces the average rent by 0.0007%. The distance at which residents perceive the risk arising from such facilities is less than in previous studies. This suggests that the risk perception recognized in previous studies may capture the other externalities in addition to the chemical risk because the risk is measured by the distance.
Resumo:
Work zone safety studies have traditionally relied on historical crash records—an approach which is reactive in nature as it requires crashes to accumulate first before taking any preventive actions. However, detailed and accurate data on work zone crashes are often not available, as is the case for Australian road work zones. The lack of reliable safety records and the reactive nature of the crash-based safety analysis approach motivated this research to seek alternative and proactive measures of safety. Various surrogate measures of safety have been developed in the traffic safety literature including time to collision, time to accident, gap time, post encroachment time, required deceleration rate, proportion of stopping distances, lateral distance to departure, and time to departure. These measures express how close road-user(s) are from a potential crash by analysing their movement trajectories. A review of this fast-growing literature is presented in this paper from the viewpoint of applying the measures to untangle work zone safety issues. The review revealed that the use of the surrogate measures is very limited for analysing work zone safety, although numerous studies have used these measures for analysing safety in other parts of the road network, such as intersections and motorway ramps. There exist great opportunities for adopting this proactive safety assessment approach to transform work zone safety for both roadworkers and motorists.