169 resultados para DFT-D
Resumo:
Background Little is known about the relation between vitamin D status in early life and neurodevelopment outcomes. Objective This study was designed to examine the association of cord blood 25-hydroxyvitamin D [25(OH)D] at birth with neurocognitive development in toddlers. Methods As part of the China-Anhui Birth Cohort Study, 363 mother-infant pairs with completed data were selected. Concentrations of 25(OH)D in cord blood were measured by radioimmunoassay. Mental development index (MDI) and psychomotor development index (PDI) in toddlers were assessed at age 16–18 mo by using the Bayley Scales of Infant Development. The data on maternal sociodemographic characteristics and other confounding factors were also prospectively collected. Results Toddlers in the lowest quintile of cord blood 25(OH)D exhibited a deficit of 7.60 (95% CI: −12.4, −2.82; P = 0.002) and 8.04 (95% CI: −12.9, −3.11; P = 0.001) points in the MDI and PDI scores, respectively, compared with the reference category. Unexpectedly, toddlers in the highest quintile of cord blood 25(OH)D also had a significant deficit of 12.3 (95% CI: −17.9, −6.67; P < 0.001) points in PDI scores compared with the reference category. Conclusions This prospective study suggested that there was an inverted-U–shaped relation between neonatal vitamin D status and neurocognitive development in toddlers. Additional studies on the optimal 25(OH)D concentrations in early life are needed.
Resumo:
Public Relations and Marketing for Archives: A How-to-do-it Manual, New York, Neal-Schuman Publishers with the Society of American Archivists, 2011. xiv + 273 pp. ISBN 978-1-5557-0733-0. US$80.00 Public Relations and Marketing for Archives – A How-To-Do-It Manual provides a brief, but broad overview of the key elements of marketing, public relations and stakeholder engagement for archives...
Resumo:
Recently, the debate around critical literacy has dissipated as literacy education agendas and attendant policies shift to embrace more hybrid approaches to the teaching of senior English. This paper reports on orientations towards critical literacy as expressed by four teachers of senior English who teach culturally and linguistically diverse learners. Teachers’ understandings of critical literacy are important given the emphasis on Critical and Creative Thinking as well as Literacy as General Capabilities underpinning the Australian Curriculum. Using critical discourse analysis and Janks' (2010) Synthesis Model of Critical Literacy, interview and classroom data from four teachers of English as an Additional Language or Dialect (EAL/D) learners in two high schools were analysed for the ways these teachers constructed critical literacy in their talk and practice. While all four teachers indicated significant commitment to critical literacy as an approach to English language teaching, their understandings varied. These ranged from providing access to powerful genres, to rationalist approaches to interrogating text, with less emphasis on multimodal design and drawing on learner diversity. This has significant implications for what kind of learning is being offered to EAL/D learners in the name of English teaching, for syllabus design, and for teacher professional development.
Resumo:
Two new star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms (1a and 1b) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both compounds exhibit strong 1π–π⁎ transitions in the UV region and intense 1π–π⁎/intramolecular charge transfer (1ICT) absorption bands in the UV–vis region. Introducing the carbazole end-capped phenylene ethynylene arm on the 1,3,5-triazine core causes a slight bathochromic shift and enhanced molar extinction coefficient of the 1π–π⁎/1ICT transition band. Both compounds are emissive in solution at room temperature and 77 K, which exhibit pronounced positive solvatochromic effect. The emitting state could be ascribed to 1ICT state in more polar solvent, and 1π–π⁎ state in low-polarity solvent. The high emission quantum yields (Φem=0.90~1.0) of 1a and 1b (in hexane and toluene) make them potential candidates as efficient light-emitting materials. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these compounds can be tuned by the carbazole end-capped phenylene ethynylene arm, which would also be useful for rational design of photofunctional materials.
Resumo:
PURPOSE: This study aims to investigate the prevalence and factors predictive of vitamin D deficiency in patients with malignancy in Brisbane, Australia (latitude 27° S). METHODS: This is a prospective cross-sectional study measuring serum levels of 25-hydroxyvitamin D (25-OHD) in 100 subjects with non-haematological cancer at least 18 years of age not taking vitamin D supplements attending a day oncology unit and oncology/palliative care inpatient ward in Brisbane, Australia. RESULTS: Thirty-seven per cent of outpatient and 49 % of inpatient subjects respectively were vitamin D deficient. Functional status was predictive of low vitamin D levels. CONCLUSION: There was a high prevalence of vitamin D deficiency in patients with cancer in Brisbane, Australia.
Resumo:
Vitamin D is synthesised in the skin through the action of UVB radiation (sunlight), and 25-hydroxy vitamin D (25OHD) measured in serum as a marker of vitamin D status. Several studies, mostly conducted in high latitudes, have shown an association between type 1 diabetes mellitus (T1DM) and low serum 25OHD. We conducted a case-control study to determine whether, in a sub-tropical environment with abundant sunlight (latitude 27.5°S), children with T1DM have lower serum vitamin D than children without diabetes. Fifty-six children with T1DM (14 newly diagnosed) and 46 unrelated control children participated in the study. Serum 25OHD, 1,25-dihydroxy vitamin D (1,25(OH)2D) and selected biochemical indices were measured. Vitamin D receptor (VDR) polymorphisms Taq1, Fok1, and Apa1 were genotyped. Fitzpatrick skin classification, self-reported daily hours of outdoor exposure, and mean UV index over the 35d prior to blood collection were recorded. Serum 25OHD was lower in children with T1DM (n=56) than in controls (n=46) [mean (95%CI)=78.7 (71.8-85.6) nmol/L vs. 91.4 (83.5-98.7) nmol/L, p=0.02]. T1DM children had lower self-reported outdoor exposure and mean UV exposure, but no significant difference in distribution of VDR polymorphisms. 25OHD remained lower in children with T1DM after covariate adjustment. Children newly diagnosed with T1DM had lower 1,25(OH)2D [median (IQR)=89 (68-122) pmol/L] than controls [121 (108-159) pmol/L, p=0.03], or children with established diabetes [137 (113-153) pmol/L, p=0.01]. Children with T1DM have lower 25OHD than controls, even in an environment of abundant sunlight. Whether low vitamin D is a risk factor or consequence of T1DM is unknown. © 2012 John Wiley & Sons A/S.
Resumo:
Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Resumo:
Some studies suggested that adequate vitamin D might reduce inflammation in adults. However, little is known about this association in early life. We aimed to determine the relationship between cord blood 25-hydroxyvitamin D (25(OH)D) and C-reactive protein (CRP) in neonates. Cord blood levels of 25(OH)D and CRP were measured in 1491 neonates in Hefei, China. Potential confounders including maternal sociodemographic characteristics, perinatal health status, lifestyle, and birth outcomes were prospectively collected. The average values of cord blood 25(OH)D and CRP were 39.43 nmol/L (SD = 20.35) and 6.71 mg/L (SD = 3.07), respectively. Stratified by 25(OH)D levels, per 10 nmol/L increase in 25(OH)D, CRP decreased by 1.42 mg/L (95% CI: 0.90, 1.95) among neonates with 25(OH)D <25.0 nmol/L, and decreased by 0.49 mg/L (95% CI: 0.17, 0.80) among neonates with 25(OH)D between 25.0 nmol/L and 49.9 nmol/L, after adjusting for potential confounders. However, no significant association between 25(OH)D and CRP was observed among neonates with 25(OH)D ≥50 nmol/L. Cord blood 25(OH)D and CRP levels showed a significant seasonal trend with lower 25(OH)D and higher CRP during winter-spring than summer-autumn. Stratified by season, a significant linear association of 25(OH)D with CRP was observed in neonates born in winter-spring (adjusted β = −0.11, 95% CI: −0.13, −0.10), but not summer-autumn. Among neonates born in winter-spring, neonates with 25(OH)D <25 nmol/L had higher risk of CRP ≥10 mg/L (adjusted OR = 3.06, 95% CI: 2.00, 4.69), compared to neonates with 25(OH)D ≥25 nmol/L. Neonates with vitamin D deficiency had higher risk of exposure to elevated inflammation at birth.
Resumo:
The electronic and optical properties of anatase titanium dioxide (TiO2), co-doped by nitrogen (N) and lithium (Li), have been investigated by density functional theory plus Hubbard correction term U, namely DFT+U. It is found that Li-dopants can effectively balance the net charges brought by N-dopants and shift the local state to the top of valence band. Depending on the distribution of dopants, the adsorption edges of TiO2 may be red- or blue-shifted, being consistent with recent experimental observations.
Resumo:
We determined the association of cord blood 25-hydroxyvitamin D [25(OH)D] with birth weight and the risk of small for gestational age (SGA). As part of the China-Anhui Birth Cohort (C-ABC) study, we measured cord blood levels of 25(OH)D in 1491 neonates in Hefei, China. The data on maternal sociodemographic characteristics, health status, lifestyle, birth outcomes were prospectively collected. Multiple regression models were used to estimate the association of 25(OH)D levels with birth weight and the risk of SGA. Compared with neonates in the lowest decile of cord blood 25(OH)D levels, neonates in four deciles (the fourth, fifth, sixth and seventh deciles) had significantly increased birth weight and decreased risk of SGA. Multiple linear regression models showed that per 10 nmol/L increase in cord blood 25(OH)D, birth weight increased by 61.0 g (95% CI: 31.9, 89.9) at concentrations less than 40 nmol/L, and then decreased by 68.5 g (95% CI: −110.5, −26.6) at concentrations from 40 to 70 nmol/L. This study provides the first epidemiological evidence that there was an inverted U shaped relationship between neonatal vitamin D status and fetal growth, and the risk of SGA reduced at moderate concentration.
Resumo:
We have shown that novel synthesis methods combined with careful evaluation of DFT phonon calculations provides new insight into boron compounds including a capacity to predict Tc for AlB2-type superconductors.
Resumo:
Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.
Resumo:
Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.
Resumo:
Introduction Recent reports have highlighted the prevalence of vitamin D deficiency and suggested an association with excess mortality in critically ill patients. Serum vitamin D concentrations in these studies were measured following resuscitation. It is unclear whether aggressive fluid resuscitation independently influences serum vitamin D. Methods Nineteen patients undergoing cardiopulmonary bypass were studied. Serum 25(OH)D3, 1α,25(OH)2D3, parathyroid hormone, C-reactive protein (CRP), and ionised calcium were measured at five defined timepoints: T1 - baseline, T2 - 5 minutes after onset of cardiopulmonary bypass (CPB) (time of maximal fluid effect), T3 - on return to the intensive care unit, T4 - 24 hrs after surgery and T5 - 5 days after surgery. Linear mixed models were used to compare measures at T2-T5 with baseline measures. Results Acute fluid loading resulted in a 35% reduction in 25(OH)D3 (59 ± 16 to 38 ± 14 nmol/L, P < 0.0001) and a 45% reduction in 1α,25(OH)2D3 (99 ± 40 to 54 ± 22 pmol/L P < 0.0001) and i(Ca) (P < 0.01), with elevation in parathyroid hormone (P < 0.0001). Serum 25(OH)D3 returned to baseline only at T5 while 1α,25(OH)2D3 demonstrated an overshoot above baseline at T5 (P < 0.0001). There was a delayed rise in CRP at T4 and T5; this was not associated with a reduction in vitamin D levels at these time points. Conclusions Hemodilution significantly lowers serum 25(OH)D3 and 1α,25(OH)2D3, which may take up to 24 hours to resolve. Moreover, delayed overshoot of 1α,25(OH)2D3 needs consideration. We urge caution in interpreting serum vitamin D in critically ill patients in the context of major resuscitation, and would advocate repeating the measurement once the effects of the resuscitation have abated.