298 resultados para DDOS ATTACKS
Resumo:
We propose CIMD (Collaborative Intrusion and Malware Detection), a scheme for the realization of collaborative intrusion detection approaches. We argue that teams, respectively detection groups with a common purpose for intrusion detection and response, improve the measures against malware. CIMD provides a collaboration model, a decentralized group formation and an anonymous communication scheme. Participating agents can convey intrusion detection related objectives and associated interests for collaboration partners. These interests are based on intrusion objectives and associated interests for collaboration partners. These interests are based on intrusion detection related ontology, incorporating network and hardware configurations and detection capabilities. Anonymous Communication provided by CIMD allows communication beyond suspicion, i.e. the adversary can not perform better than guessing an IDS to be the source of a message at random. The evaluation takes place with the help of NeSSi² (www.nessi2.de), the Network Security Simulator, a dedicated environment for analysis of attacks and countermeasures in mid-scale and large-scale networks. A CIMD prototype is being built based on the JIAC agent framework(www.jiac.de).
Resumo:
This paper presents a formal methodology for attack modeling and detection for networks. Our approach has three phases. First, we extend the basic attack tree approach 1 to capture (i) the temporal dependencies between components, and (ii) the expiration of an attack. Second, using the enhanced attack trees (EAT) we build a tree automaton that accepts a sequence of actions from input stream if there is a traverse of an attack tree from leaves to the root node. Finally, we show how to construct an enhanced parallel automaton (EPA) that has each tree automaton as a subroutine and can process the input stream by considering multiple trees simultaneously. As a case study, we show how to represent the attacks in IEEE 802.11 and construct an EPA for it.
Resumo:
Identity-Based (IB) cryptography is a rapidly emerging approach to public-key cryptography that does not require principals to pre-compute key pairs and obtain certificates for their public keys— instead, public keys can be arbitrary identifiers such as email addresses, while private keys are derived at any time by a trusted private key generator upon request by the designated principals. Despite the flurry of recent results on IB encryption and signature, some questions regarding the security and efficiency of practicing IB encryption (IBE) and signature (IBS) as a joint IB signature/encryption (IBSE) scheme with a common set of parameters and keys, remain unanswered. We first propose a stringent security model for IBSE schemes. We require the usual strong security properties of: (for confidentiality) indistinguishability against adaptive chosen-ciphertext attacks, and (for nonrepudiation) existential unforgeability against chosen-message insider attacks. In addition, to ensure as strong as possible ciphertext armoring, we also ask (for anonymity) that authorship not be transmitted in the clear, and (for unlinkability) that it remain unverifiable by anyone except (for authentication) by the legitimate recipient alone. We then present an efficient IBSE construction, based on bilinear pairings, that satisfies all these security requirements, and yet is as compact as pairing-based IBE and IBS in isolation. Our scheme is secure, compact, fast and practical, offers detachable signatures, and supports multirecipient encryption with signature sharing for maximum scalability.
Resumo:
The security of industrial control systems in critical infrastructure is a concern for the Australian government and other nations. There is a need to provide local Australian training and education for both control system engineers and information technology professionals. This paper proposes a postgraduate curriculum of four courses to provide knowledge and skills to protect critical infrastructure industrial control systems. Our curriculum is unique in that it provides security awareness but also the advanced skills required for security specialists in this area. We are aware that in the Australian context there is a cultural gap between the thinking of control system engineers who are responsible for maintaining and designing critical infrastructure and information technology professionals who are responsible for protecting these systems from cyber attacks. Our curriculum aims to bridge this gap by providing theoretical and practical exercises that will raise the awareness and preparedness of both groups of professionals.
Resumo:
Phishing emails cause enormous losses to both users and organisations. The goal of this study is to determine which individuals are more vulnerable to phishing emails. To gain this information an experiment has been developed which involves sending phishing email to users and collecting information about users. The detection deception model has been applied to identify users’ detection behaviour. We find that users who have less email experience and high levels of submissiveness have increased susceptibility. Among those, users who have high susceptibility levels and high openness and extraversion are more likely to carry on the harmful action embedded in phishing emails.
Resumo:
Trivium is a bit-based stream cipher in the final portfolio of the eSTREAM project. In this paper, we apply the approach of Berbain et al. to Trivium-like ciphers and perform new algebraic analyses on them, namely Trivium and its reduced versions: Trivium-N, Bivium-A and Bivium-B. In doing so, we answer an open question in the literature. We demonstrate a new algebraic attack on Bivium-A. This attack requires less time and memory than previous techniques which use the F4 algorithm to recover Bivium-A's initial state. Though our attacks on Bivium-B, Trivium and Trivium-N are worse than exhaustive keysearch, the systems of equations which are constructed are smaller and less complex compared to previous algebraic analysis. Factors which can affect the complexity of our attack on Trivium-like ciphers are discussed in detail.
Resumo:
Authenticated Encryption (AE) is the cryptographic process of providing simultaneous confidentiality and integrity protection to messages. This approach is more efficient than applying a two-step process of providing confidentiality for a message by encrypting the message, and in a separate pass providing integrity protection by generating a Message Authentication Code (MAC). AE using symmetric ciphers can be provided by either stream ciphers with built in authentication mechanisms or block ciphers using appropriate modes of operation. However, stream ciphers have the potential for higher performance and smaller footprint in hardware and/or software than block ciphers. This property makes stream ciphers suitable for resource constrained environments, where storage and computational power are limited. There have been several recent stream cipher proposals that claim to provide AE. These ciphers can be analysed using existing techniques that consider confidentiality or integrity separately; however currently there is no existing framework for the analysis of AE stream ciphers that analyses these two properties simultaneously. This thesis introduces a novel framework for the analysis of AE using stream cipher algorithms. This thesis analyzes the mechanisms for providing confidentiality and for providing integrity in AE algorithms using stream ciphers. There is a greater emphasis on the analysis of the integrity mechanisms, as there is little in the public literature on this, in the context of authenticated encryption. The thesis has four main contributions as follows. The first contribution is the design of a framework that can be used to classify AE stream ciphers based on three characteristics. The first classification applies Bellare and Namprempre's work on the the order in which encryption and authentication processes take place. The second classification is based on the method used for accumulating the input message (either directly or indirectly) into the into the internal states of the cipher to generate a MAC. The third classification is based on whether the sequence that is used to provide encryption and authentication is generated using a single key and initial vector, or two keys and two initial vectors. The second contribution is the application of an existing algebraic method to analyse the confidentiality algorithms of two AE stream ciphers; namely SSS and ZUC. The algebraic method is based on considering the nonlinear filter (NLF) of these ciphers as a combiner with memory. This method enables us to construct equations for the NLF that relate the (inputs, outputs and memory of the combiner) to the output keystream. We show that both of these ciphers are secure from this type of algebraic attack. We conclude that using a keydependent SBox in the NLF twice, and using two different SBoxes in the NLF of ZUC, prevents this type of algebraic attack. The third contribution is a new general matrix based model for MAC generation where the input message is injected directly into the internal state. This model describes the accumulation process when the input message is injected directly into the internal state of a nonlinear filter generator. We show that three recently proposed AE stream ciphers can be considered as instances of this model; namely SSS, NLSv2 and SOBER-128. Our model is more general than a previous investigations into direct injection. Possible forgery attacks against this model are investigated. It is shown that using a nonlinear filter in the accumulation process of the input message when either the input message or the initial states of the register is unknown prevents forgery attacks based on collisions. The last contribution is a new general matrix based model for MAC generation where the input message is injected indirectly into the internal state. This model uses the input message as a controller to accumulate a keystream sequence into an accumulation register. We show that three current AE stream ciphers can be considered as instances of this model; namely ZUC, Grain-128a and Sfinks. We establish the conditions under which the model is susceptible to forgery and side-channel attacks.
Resumo:
Availability has become a primary goal of information security and is as significant as other goals, in particular, confidentiality and integrity. Maintaining availability of essential services on the public Internet is an increasingly difficult task in the presence of sophisticated attackers. Attackers may abuse limited computational resources of a service provider and thus managing computational costs is a key strategy for achieving the goal of availability. In this thesis we focus on cryptographic approaches for managing computational costs, in particular computational effort. We focus on two cryptographic techniques: computational puzzles in cryptographic protocols and secure outsourcing of cryptographic computations. This thesis contributes to the area of cryptographic protocols in the following ways. First we propose the most efficient puzzle scheme based on modular exponentiations which, unlike previous schemes of the same type, involves only a few modular multiplications for solution verification; our scheme is provably secure. We then introduce a new efficient gradual authentication protocol by integrating a puzzle into a specific signature scheme. Our software implementation results for the new authentication protocol show that our approach is more efficient and effective than the traditional RSA signature-based one and improves the DoSresilience of Secure Socket Layer (SSL) protocol, the most widely used security protocol on the Internet. Our next contributions are related to capturing a specific property that enables secure outsourcing of cryptographic tasks in partial-decryption. We formally define the property of (non-trivial) public verifiability for general encryption schemes, key encapsulation mechanisms (KEMs), and hybrid encryption schemes, encompassing public-key, identity-based, and tag-based encryption avors. We show that some generic transformations and concrete constructions enjoy this property and then present a new public-key encryption (PKE) scheme having this property and proof of security under the standard assumptions. Finally, we combine puzzles with PKE schemes for enabling delayed decryption in applications such as e-auctions and e-voting. For this we first introduce the notion of effort-release PKE (ER-PKE), encompassing the well-known timedrelease encryption and encapsulated key escrow techniques. We then present a security model for ER-PKE and a generic construction of ER-PKE complying with our security notion.
Resumo:
Denial-of-service (DoS) attacks are a growing concern to networked services like the Internet. In recent years, major Internet e-commerce and government sites have been disabled due to various DoS attacks. A common form of DoS attack is a resource depletion attack, in which an attacker tries to overload the server's resources, such as memory or computational power, rendering the server unable to service honest clients. A promising way to deal with this problem is for a defending server to identify and segregate malicious traffic as earlier as possible. Client puzzles, also known as proofs of work, have been shown to be a promising tool to thwart DoS attacks in network protocols, particularly in authentication protocols. In this thesis, we design efficient client puzzles and propose a stronger security model to analyse client puzzles. We revisit a few key establishment protocols to analyse their DoS resilient properties and strengthen them using existing and novel techniques. Our contributions in the thesis are manifold. We propose an efficient client puzzle that enjoys its security in the standard model under new computational assumptions. Assuming the presence of powerful DoS attackers, we find a weakness in the most recent security model proposed to analyse client puzzles and this study leads us to introduce a better security model for analysing client puzzles. We demonstrate the utility of our new security definitions by including two hash based stronger client puzzles. We also show that using stronger client puzzles any protocol can be converted into a provably secure DoS resilient key exchange protocol. In other contributions, we analyse DoS resilient properties of network protocols such as Just Fast Keying (JFK) and Transport Layer Security (TLS). In the JFK protocol, we identify a new DoS attack by applying Meadows' cost based framework to analyse DoS resilient properties. We also prove that the original security claim of JFK does not hold. Then we combine an existing technique to reduce the server cost and prove that the new variant of JFK achieves perfect forward secrecy (the property not achieved by original JFK protocol) and secure under the original security assumptions of JFK. Finally, we introduce a novel cost shifting technique which reduces the computation cost of the server significantly and employ the technique in the most important network protocol, TLS, to analyse the security of the resultant protocol. We also observe that the cost shifting technique can be incorporated in any Diffine{Hellman based key exchange protocol to reduce the Diffie{Hellman exponential cost of a party by one multiplication and one addition.
Resumo:
This chapter examines the doctrinal methodology which many lawyers consider best typifies a distinctly legal approach to research. Legal research skills have been identified as a core skill for lawyers, and within the profession, such skills are regarded as synonymous with the doctrinal research method. Good legal research skills are a necessary step in attaining the ability to ‘think like a lawyer’ and achieving valid legal reasoning outcomes. For lawyers, therefore, the doctrinal method is an intuitive aspect of legal work. Yet as this chapter demonstrates, the doctrinal methodology is not without its detractors. There have been serious criticisms of the method put forward by exponents of the various critical legal theories, as well as a perception in some academic circles that the doctrinal research method is nothing more than mere ‘scholarship’ and as a result less compelling or respected than the research methods used by those in the sciences and social sciences. Despite these attacks, and the incursions on the method posed by the growth in the use of non-doctrinal and interdisciplinary research work by lawyers, the argument put forward in this chapter is that the doctrinal method still necessarily forms the basis for most, if not all, legal research projects.
Resumo:
Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
Resumo:
In recent years face recognition systems have been applied in various useful applications, such as surveillance, access control, criminal investigations, law enforcement, and others. However face biometric systems can be highly vulnerable to spoofing attacks where an impostor tries to bypass the face recognition system using a photo or video sequence. In this paper a novel liveness detection method, based on the 3D structure of the face, is proposed. Processing the 3D curvature of the acquired data, the proposed approach allows a biometric system to distinguish a real face from a photo, increasing the overall performance of the system and reducing its vulnerability. In order to test the real capability of the methodology a 3D face database has been collected simulating spoofing attacks, therefore using photographs instead of real faces. The experimental results show the effectiveness of the proposed approach.
Resumo:
The Transport Layer Security (TLS) protocol is the most widely used security protocol on the Internet. It supports negotiation of a wide variety of cryptographic primitives through different cipher suites, various modes of client authentication, and additional features such as renegotiation. Despite its widespread use, only recently has the full TLS protocol been proven secure, and only the core cryptographic protocol with no additional features. These additional features have been the cause of several practical attacks on TLS. In 2009, Ray and Dispensa demonstrated how TLS renegotiation allows an attacker to splice together its own session with that of a victim, resulting in a man-in-the-middle attack on TLS-reliant applications such as HTTP. TLS was subsequently patched with two defence mechanisms for protection against this attack. We present the first formal treatment of renegotiation in secure channel establishment protocols. We add optional renegotiation to the authenticated and confidential channel establishment model of Jager et al., an adaptation of the Bellare--Rogaway authenticated key exchange model. We describe the attack of Ray and Dispensa on TLS within our model. We show generically that the proposed fixes for TLS offer good protection against renegotiation attacks, and give a simple new countermeasure that provides renegotiation security for TLS even in the face of stronger adversaries.
Resumo:
Migraine is a common neurological disorder characterised by temporary disabling attacks of severe head pain and associated disturbances. There is significant evidence to suggest a genetic aetiology to the disease however few causal mutations have been conclusively linked to the migraine subtypes Migraine with (MA) or without Aura (MO). The Potassium Channel, Subfamily K, member 18 (KCNK18) gene, coding the potassium channel TRESK, is the first gene in which a rare mutation resulting in a non-functional truncated protein has been identified and causally linked to MA in a multigenerational family. In this study, three common polymorphisms in the KCNK18 gene were analysed for genetic variation in an Australian case-control migraine population consisting of 340 migraine cases and 345 controls. No association was observed for the polymorphisms examined with the migraine phenotype or with any haplotypes across the gene. Therefore even though the KCNK18 gene is the only gene to be causally linked to MA our studies indicate that common genetic variation in the gene is not a contributor to MA.
Resumo:
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.