430 resultados para DAMAGE EVOLUTION TRACKING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molluscan larval ontogeny is a highly conserved process comprising three principal developmental stages. A characteristic unique to each of these stages is shell design, termed prodissoconch I, prodissoconch II and dissoconch. These shells vary in morphology, mineralogy and microstructure. The discrete temporal transitions in shell biomineralization between these larval stages are utilized in this study to investigate transcriptional involvement in several distinct biomineralization events. Scanning electron microscopy and X-ray diffraction analysis of P. maxima larvae and juveniles collected throughout post-embryonic ontogenesis, document the mineralogy and microstructure of each shelled stage as well as establishing a timeline for transitions in biomineralization. P. maxima larval samples most representative of these biomineralization distinctions and transitions were analyzed for differential gene expression on the microarray platform PmaxArray 1.0. A number of transcripts are reported as differentially expressed in correlation to the mineralization events of P. maxima larval ontogeny. Some of those isolated are known shell matrix genes while others are novel; these are discussed in relation to potential shell formation roles. This interdisciplinary investigation has linked the shell developments of P. maxima larval ontogeny with corresponding gene expression profiles, furthering the elucidation of shell biomineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The psychological contract is a key analytical device utilised by both academics and practitioners to conceptualise and explore the dynamics of the employment relationship. However, despite the recognised import of the construct, some authors suggest that its empirical investigation has fallen into a 'methodological rut' [Conway & Briner, 2005, p. 89] and is neglecting to assess key tenets of the concept, such as its temporal and dynamic nature. This paper describes the research design of a longitudinal, mixed methods study which draws upon the strengths of both qualitative and quantitative modes of inquiry in order to explore the development of, and changes in, the psychological contract. Underpinned by a critical realist philosophy, the paper seeks to offer a research design suitable for exploring the process of change not only within the psychological contract domain, but also for similar constructs in the human resource management and broader organisational behaviour fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peeling is an essential phase of post harvesting and processing industry; however the undesirable losses and waste rate that occur during peeling stage are always the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical method is the most preferred; this method keeps edible portions of produce fresh and creates less damage. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry which needs more study on technological aspects of this industrial segment. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. In the proposed study a nonlinear model which will be capable of simulating the peeling process specifically, will be developed. It is expected that unavailable information such as cutting force, maximum shearing force, shear strength, tensile strength and rupture stress will be quantified using the new FEA model. The outcomes will be used to optimize and improve the current mechanical peeling methods of this class of vegetables and thereby enhance the overall effectiveness of processing operations. Presented paper aims to review available literature and previous works have been done in this area of research and identify current gap in modelling and simulation of food processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter argues that evolutionary economics should be founded upon complex systems theory rather than neo-Darwinian analogies concerning natural selection, which focus on supply side considerations and competition amongst firms and technologies. It suggests that conceptions such as production and consumption functions should be replaced by network representations, in which the preferences or, more correctly, the aspirations of consumers are fundamental and, as such, the primary drivers of economic growth. Technological innovation is viewed as a process that is intermediate between these aspirational networks, and the organizational networks in which goods and services are produced. Consumer knowledge becomes at least as important as producer knowledge in determining how economic value is generated. It becomes clear that the stability afforded by connective systems of rules is essential for economic flexibility to exist, but that too many rules result in inert and structurally unstable states. In contrast, too few rules result in a more stable state, but at a low level of ordered complexity. Economic evolution from this perspective is explored using random and scale free network representations of complex systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the development of an independent and on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a moving surface target. Our image segmentation and target identification algorithms were developed with the specific task of monitoring whales at sea but could be adapted for other targets. Observing whales is important for many marine biology tasks and is currently performed manually from the shore or from boats. We also present hardware experiments which demonstrate the capabilities of our algorithms for object identification and tracking that enable a flying vehicle to track a moving target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Life Drama is a program of drama-based experiential learning activities involving groups of community leaders and members. The three-year project evolved from a theatre-in-education approach to an intercultural theatre approach incorporating Papua New Guinean performance traditions. It involved Australian, English and Papua New Guinean researchers at four key sites: Tari, Southern Highlands Province; Port Moresby, National Capital District; Madang, Madang Province; and Karkar Island, Madang Province. The project was innovative in a number of ways, including: a Participatory Action Research approach, involving community leaders at various levels as co-researchers; a participatory theatre approach as opposed to a performance approach; emphasis on sexual health promotion and HIV prevention through an experiential learning paradigm; addressing the norms and realities of the community rather than targeting only individual behaviour; an International Theatre Research Laboratory to explore the fusion of traditional cultural elements with contemporary health promotion aims; and an innovative method-assemblage approach to collecting and triangulating quantitative, qualitative, and performative data. The project attracted over $350,000 in funding and support from the Australian Research Council, National AIDS Secretariat in PNG, and private sector and non-government partners. Findings were presented at various conferences and symposia including the annual Medical Symposium in Wewak (2010), the triennial Research in Drama Education conference in Exeter (2011), and the International Research in Drama Education conference (Sydney 2009 and Limerick 2012). A number of peer-reviewed journal articles have been published. Elements of the program have been incorporated into the University of Goroka's compulsory HIV awareness program for undergraduate students. A national dissemination strategy for Life Drama in Papua New Guinea is now underway, with seed funding of AUD$74,000 from the National AIDS Council Secretariat, PNG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.

Relevância:

20.00% 20.00%

Publicador: