283 resultados para Compressed text search
Resumo:
A big challenge for classification on text is the noisy of text data. It makes classification quality low. Many classification process can be divided into two sequential steps scoring and threshold setting (thresholding). Therefore to deal with noisy data problem, it is important to describe positive feature effectively scoring and to set a suitable threshold. Most existing text classifiers do not concentrate on these two jobs. In this paper, we propose a novel text classifier with pattern-based scoring that describe positive feature effectively, followed by threshold setting. The thresholding is based on score of training set, make it is simple to implement in other scoring methods. Experiment shows that our pattern-based classifier is promising.
Resumo:
Paramedic education has been undergoing major development in Australia in the past 20 years, with many different educational programmes being developed across all Australian jurisdictions. This paper aims to review the current paramedic education programmes in Australia to identify the similarities and differences between the programmes, and the strengths and challenges in these programmes. A literature search was performed using six scientific databases to identify any systematic reviews, literature reviews or relevant articles on the topic. Additional searches included journal articles and text references from 1995 to 2011. The search was conducted during December 2010 and November 2011. Included in this review are a total of 28 articles, which are focused around five major issues in paramedic education: (i) principle on paramedic programmes and the involvement of industry partners; (ii) clinical placements; (iii) contemporary methods of education; (iv) needs for specific programmes within paramedic education; and (v) articles related to the accreditation process for paramedic programmes. Paramedic programmes across Australian universities vary with many different practices, especially relating to clinical placements in the field. The further advances of the paramedic education programmes should aim to respond to population change and industry development, which would enhance the paramedic profession across Australia.
Resumo:
Much has been written on Michel Foucault’s reluctance to clearly delineate a research method, particularly with respect to genealogy (Harwood 2000; Meadmore, Hatcher, & McWilliam 2000; Tamboukou 1999). Foucault (1994, p. 288) himself disliked prescription stating, “I take care not to dictate how things should be” and wrote provocatively to disrupt equilibrium and certainty, so that “all those who speak for others or to others” no longer know what to do. It is doubtful, however, that Foucault ever intended for researchers to be stricken by that malaise to the point of being unwilling to make an intellectual commitment to methodological possibilities. Taking criticism of “Foucauldian” discourse analysis as a convenient point of departure to discuss the objectives of poststructural analyses of language, this paper develops what might be called a discursive analytic; a methodological plan to approach the analysis of discourses through the location of statements that function with constitutive effects.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Least developed countries (LDCs) are the primary victims of environmental changes, including present and future impacts of climate change. Environmental degradation poses a serious threat to the conservation and sustainable use of natural resources, thus hindering development in LDCs. Simultaneously, poverty is itself both a major cause and effect of global environmental problems. Against this backdrop, this essay argues that without recognition and protection of a collective right to development, genuine environmental protection will remain unachievable. Further, this essay submits that, particularly in the context of LDCs, the right to environment and the right to development are inseparable. Finally, this essay argues that the relationship between the right to environment and the right to development must fall within the paradigm of sustainable development if the promotion and protection of those rights are to be justified.
Resumo:
Ship-breaking started as an industry in Bangladesh in the early 1970s. This industry is not technically organized, and the management is also primitive and unsound. Although specific information is not available, it is estimated that about 700 workers have been killed and, at the same time, a total of 10,000 workers have been injured in explosions at the ship-breaking yards over the last three decades. This process continues unabated in the absence of specific legislation for regulating ship-breaking industries in Bangladesh. Against this backdrop, this paper identifies the major issues relating to enforcement of labour rights in the ship-breaking yards of Bangladesh.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
Text categorisation is challenging, due to the complex structure with heterogeneous, changing topics in documents. The performance of text categorisation relies on the quality of samples, effectiveness of document features, and the topic coverage of categories, depending on the employing strategies; supervised or unsupervised; single labelled or multi-labelled. Attempting to deal with these reliability issues in text categorisation, we propose an unsupervised multi-labelled text categorisation approach that maps the local knowledge in documents to global knowledge in a world ontology to optimise categorisation result. The conceptual framework of the approach consists of three modules; pattern mining for feature extraction; feature-subject mapping for categorisation; concept generalisation for optimised categorisation. The approach has been promisingly evaluated by compared with typical text categorisation methods, based on the ground truth encoded by human experts.
Resumo:
In a classification problem typically we face two challenging issues, the diverse characteristic of negative documents and sometimes a lot of negative documents that are closed to positive documents. Therefore, it is hard for a single classifier to clearly classify incoming documents into classes. This paper proposes a novel gradual problem solving to create a two-stage classifier. The first stage identifies reliable negatives (negative documents with weak positive characteristics). It concentrates on minimizing the number of false negative documents (recall-oriented). We use Rocchio, an existing recall based classifier, for this stage. The second stage is a precision-oriented “fine tuning”, concentrates on minimizing the number of false positive documents by applying pattern (a statistical phrase) mining techniques. In this stage a pattern-based scoring is followed by threshold setting (thresholding). Experiment shows that our statistical phrase based two-stage classifier is promising.
Resumo:
In this article, we investigate experimentally whether people search optimally and how price promotions influence search behaviour. We implement a sequential search task with exogenous price dispersion in a baseline treatment and introduce discounts in two experimental treatments. We find that search behaviour is roughly consistent with optimal search but also observe some discount biases. If subjects do not know in advance where discounts are offered, the purchase probability is increased by 19 percentage points in shops with discounts, even after controlling for the benefit of the discount and for risk preferences. If consumers know in advance where discounts are given, then the bias is only weakly significant and much smaller (7 percentage points).
Resumo:
Participation in extreme sports is continuing to grow, yet there is still little understanding of participant motivations in such sports. The purpose of this paper is to report on one aspect of motivation in extreme sports, the search for freedom. The study utilized a hermeneutic phenomenological methodology. Fifteen international extreme sport participants who participated in sports such as BASE jumping, big wave surfing, extreme mountaineering, extreme skiing, rope free climbing and waterfall kayaking were interviewed about their experience of participating in an extreme sport. Results reveal six elements of freedom: freedom from constraints, freedom as movement, freedom as letting go of the need for control, freedom as the release of fear, freedom as being at one, and finally freedom as choice and responsibility. The findings reveal that motivations in extreme sport do not simply mirror traditional images of risk taking and adrenaline and that motivations in extreme sports also include an exploration of the ways in which humans seek fundamental human values.
Resumo:
Migraine is a complex familial condition that imparts a significant burden on society. There is evidence for a role of genetic factors in migraine, and elucidating the genetic basis of this disabling condition remains the focus of much research. In this review we discuss results of genetic studies to date, from the discovery of the role of neural ion channel gene mutations in familial hemiplegic migraine (FHM) to linkage analyses and candidate gene studies in the more common forms of migraine. The success of FHM regarding discovery of genetic defects associated with the disorder remains elusive in common migraine, and causative genes have not yet been identified. Thus we suggest additional approaches for analysing the genetic basis of this disorder. The continuing search for migraine genes may aid in a greater understanding of the mechanisms that underlie the disorder and potentially lead to significant diagnostic and therapeutic applications.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and, thus, help in making good decisions about which product to buy from the vast amount of product choices. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based approaches. These approaches are not directly applicable for recommending infrequently purchased products such as cars and houses as it is difficult to collect a large number of ratings data from users for such products. Many of the ecommerce sites for infrequently purchased products are still using basic search-based techniques whereby the products that match with the attributes given in the target user’s query are retrieved and recommended. However, search-based recommenders cannot provide personalized recommendations. For different users, the recommendations will be the same if they provide the same query regardless of any difference in their interest. In this article, a simple user profiling approach is proposed to generate user’s preferences to product attributes (i.e., user profiles) based on user product click stream data. The user profiles can be used to find similarminded users (i.e., neighbours) accurately. Two recommendation approaches are proposed, namely Round- Robin fusion algorithm (CFRRobin) and Collaborative Filtering-based Aggregated Query algorithm (CFAgQuery), to generate personalized recommendations based on the user profiles. Instead of using the target user’s query to search for products as normal search based systems do, the CFRRobin technique uses the attributes of the products in which the target user’s neighbours have shown interest as queries to retrieve relevant products, and then recommends to the target user a list of products by merging and ranking the returned products using the Round Robin method. The CFAgQuery technique uses the attributes of the products that the user’s neighbours have shown interest in to derive an aggregated query, which is then used to retrieve products to recommend to the target user. Experiments conducted on a real e-commerce dataset show that both the proposed techniques CFRRobin and CFAgQuery perform better than the standard Collaborative Filtering and the Basic Search approaches, which are widely applied by the current e-commerce applications.
Resumo:
We propose a cluster ensemble method to map the corpus documents into the semantic space embedded in Wikipedia and group them using multiple types of feature space. A heterogeneous cluster ensemble is constructed with multiple types of relations i.e. document-term, document-concept and document-category. A final clustering solution is obtained by exploiting associations between document pairs and hubness of the documents. Empirical analysis with various real data sets reveals that the proposed meth-od outperforms state-of-the-art text clustering approaches.