155 resultados para Cladding (coating)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strategies for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) are proposed by modifying highly transparent and highly ordered multilayer mesoporous TiO 2 photoanodes through nitrogen-doping and top-coating with a light-scattering layer. The mesoporous TiO 2 photoanodes were fabricated by an evaporation-induced self-assembly method. In regard to the modification methods, the light-scattering layer as a top-coating was proved to be superior to nitrogen-doping in enhancing not only the power conversion efficiency but also the fill factor of DSSCs. The optimized bifunctional photoanode consisted of a 30-layer mesoporous TiO 2 thin film (4.15 μm) and a Degussa P25 light-scattering top-layer (4 μm), which gives rise to a ∼200% higher cell efficiency than for unmodified cells and a fill factor of 0.72. These advantages are attributed to its higher dye adsorption, better light scattering, and faster photon-electron transport. Such a photoanode configuration provides an efficient way to enhance the energy conversion efficiency of DSSCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y2SiO5 has potential applications as a high-temperature structural ceramic and environmental/thermal barrier coating. In this work, we synthesized single-phase Y2SiO5 powders utilizing a solid-liquid reaction method with LiYO2 as an additive. The reaction path of the Y2O3/SiO2/LiYO2 mixture with variation in temperatures and the role of the LiYO2 additive on preparation process were investigated in detail. The powders obtained by this method have good sinterability. Through a pressureless sintering process, almost fully dense Y2SiO5 bulk material was achieved with a very high density of 99.7% theoretical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.