194 resultados para Chemical engineering
Resumo:
Nano zero valent iron (NZVI) prepared by reducing natural goethite in hydrogen at 550 °C was used to remove phosphate. The effect of particle size, reaction time, NZVI dose, pH, initial phosphorus concentration, and oxygen amount in reaction system on phosphorus removal was investigated. The characterization of X-ray fluorescence (XRF), X-ray diffraction (XRD), N2 adsorption and desorption (BET analysis), transmission electron microscope (TEM), field emission scanning electron microscope with a energy dispersive X-ray detector (FESEM/EDS) and X-ray photoelectron spectroscopy (XPS) indicated that nanoscale of iron (around 80–150 nm length and 5–30 nm width) was prepared successfully with high dispersion and relative large surface area around 22 m2/g. The results of batch experiments and XPS analysis suggested that this kind of NZVI had a good performance on removal of phosphate (over 99%) despite in slightly acidic media as the initial concentration of P was 5 mg/L. The reason was ascribed to the effective corrosion of this NZVI under the function of proton and dissolved oxygen in spite of the existence of thin passive films.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Resumo:
Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.
Resumo:
Numerous crops grow in sugar regions that have the potential to increase the amount of biomass available to a small bagasse-based pulp factory. Arundo donax and Sorghum offer unique advantages to farmers compared to other agricultural crops. Sorghum bicolour requires only 1/3 of the water of sugarcane. Arundo donax is a very high yield crop, it can also grow with little water but it has the further advantage in that it is also highly stress tolerant, making it suitable for land which is unsuited to other crops. Pulps produced from these crops were benchmarked against sugarcane bagasse pulp. Arundo, sorghum and bagasse were pulped using KOH and anthraquinone to 20 Kappa number so as to produce a bleachable pulp which is suitable for making photocopier paper and tissue products. The unbleached sorghum pulp has better tensile strength properties than the unbleached Arundo pulp (43.8 Nm/g compared to 21.4 Nm/g) and the bleached sorghum pulp tensile strength was similar to bagasse (28.4 Nm/g). At 20 Kappa number, sorghum pulp had acceptable yield for a non-wood fibre (45% c.f. 55% for bagasse), Arundo donax pulp had low tensile strength, and relatively low yield (38.7%), even for an agricultural fibre and required severe cooking conditions to achieve similar delignification to sugarcane bagasse or sorghum. Sorghum and Arundo donax produced thicker handsheets than bagasse (>160 µm c.f. 122 µm for bagasse). In preliminary experiments sorghum and bagasse responded slightly better to Totally Chlorine Free peroxide bleaching (QPP), although none achieved a satisfactory brightness level and further improvement would be required to produce a bleached pulp.
Resumo:
Bagasse stockpile operations have the potential to lead to adverse environmental and social impacts. Dust releases can cause occupational health and safety concerns for factory workers and dust emissions impact on the surrounding community. Preliminary modelling showed that bagasse depithing would likely reduce the environmental risks, particularly dust emissions, associated with large-scale bagasse stockpiling operations. Dust emission properties were measured and used for dispersion modelling with favourable outcomes. Modelling showed a 70% reduction in peak ground level concentrations of PM10 dust (particles with an aerodynamic diameter less than 10 μm) from operations on depithed bagasse stockpiles compared to similar operations on stockpiles of whole bagasse. However, the costs of a depithing operation at a sugar factory were estimated to be approximately $2.1 million in capital expenditure to process 100 000 t/y of bagasse and operating costs were 200 000 p.a. The total capital cost for a 10 000 t/y operation was approximately $1.6 million. The cost of depithing based on a discounted cash flow analysis was $5.50 per tonne of bagasse for the 100 000 t/y scenario. This may make depithing prohibitively expensive in many situations if installed exclusively as a dust control measure.
Resumo:
Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified, resulting in effective removal of intractable scale.
Resumo:
Developments in evaporator cleaning have accelerated in the past 10 years as a result of an extended period of research into scale formation and scale composition. Chemical cleaning still provides the most cost effective method of cleaning the evaporators. The paper describes a system that was designed to obtain on-line samples of evaporator scale negating the need to open up hot evaporator vessels for scale collection. This system was successfully implemented in a number of evaporators at a sugar mill. This paper also describes a recent experience in a sugar factory in which the cleaning procedure was slightly modified resulting in effective removal of intractable scale.
Resumo:
Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.
Resumo:
Sugarcane biorefineries co-producing fuels, green chemicals and bio-products offer great potential for improving the profitability and sustainability of sugarcane industries around the world. Sugarcane bagasse is widely regarded as one of the best biomass feedstocks for early adoption and commercialisation of biorefining technologies because of the large scale of the resource and its availability at sugar factories. Biomass biorefineries aim to convert bagasse through biochemical and thermochemical processes to produce low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation technologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as succinic and levulinic and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Recent advances in biorefinery production technologies are being demonstrated in a unique research facility at the Queensland University of Technology’s Mackay Renewable Biocommodities Pilot Plant in Mackay, Australia. This pilot scale production facility located at Mackay Sugar Ltd’s Racecourse Mill is demonstrating the production of a range of fuels and other products from sugarcane bagasse. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.
Resumo:
Novel nano zero-valent iron/palygorskite composite materials prepared by evaporative and centrifuge methods are tested for the degradation of bisphenol A in an aqueous medium. A systematic study is presented which showed that nano zero-valent iron material has little effect on bisphenol A degradation. When hydrogen peroxide was added to initiate the reaction, some percentage of bisphenol A removal (∼20%) was achieved; however, with the aid of air bubbles, the percentage removal can be significantly increased to ∼99%. Compared with pristine nano zero-valent iron and commercial iron powder, nano zero-valent iron/palygorskite composite materials have much higher reactivity towards bisphenol A and these materials are superior as they have little impact on the solution pH. However, for pristine nano zero-valent iron, it is difficult to maintain the reaction system at a favourable low pH which is a key factor in maintaining high bisphenol A removal. All materials were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The optimum conditions were obtained based on a series of batch experiments. This study has extended the application of nano zero-valent iron/palygorskite composites as effective materials for the removal of phenolic compounds from the environment.
Resumo:
Recently, the capture and storage of CO2 have attracted research interest as a strategy to reduce the global emissions of greenhouse gases. It is crucial to find suitable materials to achieve an efficient CO2 capture. Here we report our study of CO2 adsorption on boron-doped C60 fullerene in the neutral state and in the 1e−-charged state. We use first principle density functional calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC59 cage in its neutral state and the interactions can be enhanced significantly by introducing an extra electron to the system.
Resumo:
ROBERT EVAPORATORS in Australian sugar factories are traditionally constructed with 44.45 mm outside diameter stainless steel tubes of ~2 m length for all stages of evaporation. There are a few vessels with longer tubes (up to 2.8 m) and smaller and larger diameters (38.1 and 50.8 mm). Queensland University of Technology is undertaking a study to investigate the heat transfer performance of tubes of different lengths and diameters for the whole range of process conditions typically encountered in the evaporator set. Incorporation of these results into practical evaporator designs requires an understanding of the cost implications for constructing evaporator vessels with calandrias having tubes of different dimensions. Cost savings are expected for tubes of smaller diameter and longer length in terms of material, labour and installation costs in the factory. However these savings must be considered in terms of the heat transfer area requirements for the evaporation duty, which will likely be a function of the tube dimensions. In this paper a capital cost model is described which provides a relative cost of constructing and installing Robert evaporators of the same heating surface area but with different tube dimensions. Evaporators of 2000, 3000, 4000 and 5000 m2 are investigated. This model will be used in conjunction with the heat transfer efficiency data (when available) to determine the optimum tube dimensions for a new evaporator at a specified evaporation duty. Consideration is also given to other factors such as juice residence time (and implications for sucrose degradation and control) and droplet de-entrainment in evaporators of different tube dimensions.