474 resultados para Chaucer, Geoffrey, -1400.
Resumo:
This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.
Resumo:
A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.
Resumo:
While Australia is considered a world leader in tobacco control, smoking rates within the Aboriginal and Torres Strait Islander population have not declined at the same rate. This failure highlights an obvious shortcoming of mainstream anti-smoking efforts to effectively understand and engage with the socio-cultural context of Indigenous smoking and smoking cessation experiences. The purpose of this article is to explore the narrative accounts of 20 Indigenous ex-smokers within an urban community and determine the motivators and enablers for successful smoking cessation. Our findings indicated that health risk narratives and the associated social stigma produced through anti-smoking campaigns formed part of a broader apparatus of oppression among Indigenous people, often inspiring resistance and resentment rather than compliance. Instead, a significant life event and supportive relationships were the most useful predictors of successful smoking cessation acting as both a motivator and enabler to behavioural change. Indigenous smoking cessation narratives most commonly involved changing and reordering a person’s life and identity and autonomy over this process was the critical building block to reclaiming control over nicotine addiction. Most promisingly, at an individual level, we found the important role that individual health professionals played in encouraging and supporting Indigenous smoking cessation through positive rather than punitive interactions. More broadly, our findings highlighted the central importance of resilience, empowerment, and trust within health promotion practice.
Resumo:
Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
Objectives: The current study investigated the change in neuromuscular contractile properties following competitive rugby league matches and the relationship with physical match demands. Design: Eleven trained, male rugby league players participated in 2–3 amateur, competitive matches (n = 30). Methods: Prior to, immediately (within 15-min) and 2 h post-match, players performed repeated counter-movement jumps (CMJ) followed by isometric tests on the right knee extensors for maximal voluntary contraction (MVC), voluntary activation (VA) and evoked twitch contractile properties of peak twitch force (Pt), rate of torque development (RTD), contraction duration (CD) and relaxation rate (RR). During each match, players wore 1 Hz Global Positioning Satellite devices to record distance and speeds of matches. Further, matches were filmed and underwent notational analysis for number of total body collisions. Results: Total, high-intensity, very-high intensity distances covered and mean speed were 5585 ± 1078 m, 661 ± 265, 216 ± 121 m and 75 ± 14 m min−1, respectively. MVC was significantly reduced immediately and 2 h post-match by 8 ± 11 and 12 ± 13% from pre-match (p < 0.05). Moreover, twitch contractile properties indicated a suppression of Pt, RTD and RR immediately post-match (p < 0.05). However, VA was not significantly altered from pre-match (90 ± 9%), immediately-post (89 ± 9%) or 2 h post (89 ± 8%), (p > 0.05). Correlation analyses indicated that total playing time (r = −0.50) and mean speed (r = −0.40) were moderately associated to the change in post-match MVC, while mean speed (r = 0.35) was moderately associated to VA. Conclusions: The present study highlights the physical demands of competitive amateur rugby league result in interruption of peripheral contractile function, and post-match voluntary torque suppression may be associated with match playing time and mean speeds.
Resumo:
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h−1; P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h−1; P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01−0.04; d = 0.96−1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004−0.03; d = 0.77−3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.
Resumo:
This study investigated the effects of alcohol ingestion on lower body strength and power, and physiological and cognitive recovery following competitive Rugby League matches. Nine male Rugby players participated in two matches, followed by one of two randomized interventions; a control or alcohol ingestion session. Four hours post-match, participants consumed either beverages containing a total of 1g of ethanol per kg bodyweight (vodka and orange juice; ALC) or a caloric and taste matched non-alcoholic beverage (orange juice; CONT). Pre, post, 2 h post and 16 h post match measures of countermovement jump (CMJ), maximal voluntary contraction(MVC), voluntary activation (VA), damage and stress markers of creatine kinase (CK), C-reactive protein (CRP), cortisol, and testosterone analysed from venous blood collection, and cognitive function (modified Stroop test) were determined. Alcohol resulted in large effects for decreased CMJ height(-2.35 ± 8.14 and -10.53 ± 8.36 % decrement for CONT and ALC respectively; P=0.15, d=1.40), without changes in MVC (P=0.52, d=0.70) or VA (P=0.15, d=0.69). Furthermore, alcohol resulted in a significant slowing of total time in a cognitive test (P=0.04, d=1.59), whilst exhibiting large effects for detriments in congruent reaction time (P=0.19, d=1.73). Despite large effects for increased cortisol following alcohol ingestion during recovery (P=0.28, d=1.44), post-match alcohol consumption did not unduly affect testosterone (P-0.96, d=0.10), CK (P=0.66, d=0.70) or CRP(P=0.75, d=0.60). It appears alcohol consumption during the evening following competitive rugby matches may have some detrimental effects on peak power and cognitive recovery the morning following a Rugby League match. Accordingly, practitioners should be aware of the potential associated detrimental effects of alcohol consumption on recovery and provide alcohol awareness to athletes at post-match functions.
Resumo:
This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h−1; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. −3.18 km · h−1; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h−1; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001–0.05; d = 1.31–5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.
Resumo:
The aim of this study was to investigate the effect of court surface (clay v hard-court) on technical, physiological and perceptual responses to on-court training. Four high-performance junior male players performed two identical training sessions on hard and clay courts, respectively. Sessions included both physical conditioning and technical elements as led by the coach. Each session was filmed for later notational analysis of stroke count and error rates. Further, players wore a global positioning satellite device to measure distance covered during each session; whilst heart rate, countermovement jump distance and capillary blood measures of metabolites were measured before, during and following each session. Additionally a respective coach and athlete rating of perceived exertion (RPE) were measured following each session. Total duration and distance covered during of each session were comparable (P>0.05; d<0.20). While forehand and backhands stroke volume did not differ between sessions (P>0.05; d<0.30); large effects for increased unforced and forced errors were present on the hard court (P>0.05; d>0.90). Furthermore, large effects for increased heart rate, blood lactate and RPE values were evident on clay compared to hard courts (P>0.05; d>0.90). Additionally, while player and coach RPE on hard courts were similar, there were large effects for coaches to underrate the RPE of players on clay courts (P>0.05; d>0.90). In conclusion, training on clay courts results in trends for increased heart rate, lactate and RPE values, suggesting sessions on clay tend towards higher physiological and perceptual loads than hard courts. Further, coaches appear effective at rating player RPE on hard courts, but may underrate the perceived exertion of sessions on clay courts.
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.